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Plastic deformation of crystalline materials with isotropic particle
attractions proceeds by the creation and migration of disloca-
tions under the influence of external forces. If dislocations are
produced and migrated under the action of local forces, then
material shape change can occur without the application of sur-
face forces. We investigate how particles with variable diameters
can be embedded in colloidal monolayers to produce disloca-
tions on demand. We find in simulation that when embedded
clusters of variable diameter particles are taken through multi-
ple cycles of swelling and shrinking, large cumulative plastic slip
is produced by the creation and biased motion of dislocation
pairs in the solid for embedded clusters of particular geome-
tries. In this way, dislocations emitted by these clusters (biased
“dislocation emitters”) can be used to reshape colloidal matter.
Our results are also applicable to larger-scale swarms of robotic
particles that organize into dense ordered two-dimensional (2D)
arrangements. We conclude with a discussion of how dislocations
fulfill for colloids the role sought by “metamodules” in lattice
robotics research and show how successive applications of shear
as a unit operation can produce shape change through slicing
and swirling.

active matter | swarming | colloids | robotics | soft matter

W ith sufficient miniaturization it is possible to create mate-
rials that at the human length scale appear continuous

but are in fact composed of discrete subunits that have been
engineered. When the subunits are small and relatively sim-
ple, such materials are often referred to as “metamaterials.”
As an example, the manipulation of optical material properties
by engineering the response of so-called “metaatoms” has seen
significant success (1, 2).

When the complexity of the subunit is increased to the point
where each “module” has some combination of independent
sensing, actuation, self-propulsion, and communication ability,
then the material is described as a modular robot (3). Many
forms of reconfigurable modular robots have been proposed
and prototyped. A subset of studies frames the aggregate col-
lection of robotic modules as a new metamaterial type. Lattice
robots (4–6), “programmable matter” (7), the “slimebot” (8),
and the “particle robot” (9) are examples of this school of
thought. While simulations of modular robots have advanced
to the million-module scale (10–12), experimental realization
of more than 100 robotic modules in the laboratory remains
challenging [with the notable exception of Rubenstein et al.
(13)]. The demanding requirements of robotic function neces-
sitate considerable complexity and cost, restricting experimental
studies to the macroscopic scale.

Metamaterials and active matter, while conceptually linked,
differ greatly in their subunit cost and in functionalities such
as environment sensing, communication, or information process-
ing capacity. In the last several decades, chemists have advanced
techniques that permit submicrometer particles to perform work
locally, increasing the functions available to very small subunits.
For the first time, it is feasible to consider a continuum-scale
material composed of devices (active particles) that locally per-
form work in a designed way. Swarms of self-propelled colloids

can be controlled with a global field, such as light intensity (14),
chemical signaling (15), or a rotating magnetic field (16–20).
The behavior of such nonequilibrium colloidal swarms relies
heavily on emergent phenomena to take the place of inte-
grated communication and control often present in macroscale
robotic swarms. Despite the stochasticity inherent in emergent
interactions, certain actions are predictable, controllable, and
repeatable.

A fundamental function of a modular robot is to reconfigure
its shape. Many applications of interest rely on shape change:
moving cargo, crawling past obstacles, engulfing cargo, etc. When
the number of subunits is small and subunit complexity is high,
algorithmic planning can achieve near optimal reconfiguration
characteristics. For colloidal-scale metamaterials composed of
many thousands or millions of individual subunits, with no abil-
ity to locally communicate or algorithmically plan their actions,
another approach is needed. Shape change on this scale might
be better thought of as a controlled plastic deformation. In
systems composed of isotropically attracting subunits (such as
colloidal crystals of sticky hard spheres or atomic metals), plas-
tic deformation is controlled by the production and migration of
defects known as dislocations (21, 22). The creation and control
of two-dimensional (2D) dislocations via optical fields have been
reported in colloidal systems (23, 24).

In this paper we explore how quasi-2D crystallites of colloids
can be reshaped by the production and migration of disloca-
tion defects. We present here a simplistic scheme of disloca-
tion creation based on swelling the size of an anisotropically
shaped subset of the crystallite’s particles. This approach to
material reconfiguration relies upon consistent creation of dislo-
cations (in our study, at the surface of the embedded swellable
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cluster) and a sink to absorb dislocations. The simplest such
sink is a free surface of the material domain; however, other
sinks include internal grain boundaries within extended crys-
talline domains or even other (complementary) dislocations. In
this study we focus on the case of a finite-size crystallite domain
as the material to be reconfigured and therefore use the material
edges as the primary dislocation sink. Such finite-sized crystal-
lites necessitate attractive interactions between the subunits. In
a colloidal setting, such attraction might be supplied by depletion
(25), electric fields (26, 27), magnetic fields (28), particle activity
(14), DNA functionalization (29), or a variety of other tactics (30,
31). The important characteristic of the interparticle attraction
here is isotropy. Strongly directional interactions will not permit
the free motion of dislocations.

We simulate a colloidal crystalline monolayer of finite size,
such as might be prepared by sedimentation of sticky colloidal
spheres on a flat surface. A cluster of colloids with variable diam-
eter [achieved via, e.g., heating (32, 33), solvent swelling (34, 35),
or other methods (36)] is embedded in this monolayer. We show
that global control over a single degree of freedom (the diame-
ter of the particles in the embedded cluster) is sufficient to effect
significant reshaping of the crystallite’s boundary by the creation
and emission of dislocations. Our results are also applicable to
certain classes of “lattice robots,” which operate at larger length
scales (4, 5).

We begin with an overview of our concept to use dislocations
to create colloidal shape shifters. Next, we show several exam-
ples of reshaping in finite-sized crystallites and bulk domains. We
then present the necessary geometric features of the embedded
clusters and the importance of anisotropy in dislocation emis-
sion. We conclude with a discussion of how this study relates to
existing work on reconfiguration schemes for modular robots.

Dislocations as Colloidal Crystallite Reshaping Tools
We propose that by selectively inducing shear along arbitrary
slip planes in a crystallite a wide range of surface and interior
reconfigurations are possible. Fig. 1 outlines three cases where
the ability to shear along arbitrary planes allows for a useful
task to be carried out. Fig 1 shows how bulk locomotion, cargo
transport, and cargo capture could be achieved using only shear
displacements in a colloidal crystallite robot.

Within a crystalline material, nonelastic shear displacement
is the result of the propagation of dislocations. Dislocations
are the fundamental unit of shear slip in crystals undergoing
plastic (i.e., irreversible) deformation. As a dislocation travels
through a material, the regions on either side of the defect’s
glide plane are translated (slipped) relative to each other by an
amount given by the dislocation’s Burgers vector. The creation
of a dislocation must conserve the total Burgers vector (which
must remain zero if starting from a defect-free crystal). There-
fore, when dislocations are created, they appear in pairs. For a
given glide plane in a 2D crystal, such dislocations can be either
left or right handed, which we refer to as “positive” and “nega-
tive.” Positive dislocations are those that define the termination
of an additional half plane of particles that extends into the
positive half space of the crystal (“above” the glide plane). Like-
wise, negative dislocations terminate the half plane that occupies
the negative half space (“below” the glide plane). The Burg-
ers vector of these two dislocations is opposite and equal, and
if they are brought together, they annihilate and a defect-free
crystal results.

If a dislocation is migrated to a boundary of a crystal, such as
exists at a free surface, then the termination of the half plane it
bounds will appear on that surface. This eliminates the disloca-
tion and its elastic deformation, leaving behind only the change
to the surface. This change is a step of height equal to the dis-
location’s Burgers vector. If dislocation pairs could be created
and driven to the surface in a particular (arbitrary) pattern,

C

B

A

Fig. 1. Schematic representations of functional operations that can be
performed by selective shearing. A crystalline colloidal robot (green) recon-
figures itself by shearing along selective planes (dashed lines). Yellow arrows
represent planned displacements. (A) Locomotion via shearing for a col-
loidal robot in contact with a wall (gray, hatched). By shearing on multiple
planes the robot is “rolled” along the wall. (B) Peristaltic transport of an
object (yellow cylinder) by a colloidal robot via shearing operations. By
sequential activation and reversal of shearing planes, the cargo is trans-
ported along the robot. (C) Cargo (brown cylinder) capture via shearing
operations.

then in theory any surface reorganization could be accomplished
one Burgers vector at a time. This method of surface reshaping
requires the ability to produce oriented dislocations on demand
as well as a means to direct them toward the free surface to
be reshaped. Notably, if both the positive and negative disloca-
tions from the created pair were directed to the same surface,
then no permanent change in the crystallite boundary would be
achieved because the second dislocation to arrive would reverse
the effects of the first one. Therefore, to use dislocations as
operations to sculpt surfaces we must have a means of separat-
ing them that is strong enough to overcome the attractive force
driving recombination of the pair on the same glide plane.

The fundamental unit of dislocation-based reconfiguration is
a cycle in which the dislocation pair is produced by a disloca-
tion emitter and subsequently absorbed by dislocation sinks. We
demonstrate this process schematically in Fig. 2. Fig. 2 B, i–iii
shows schematic representations of dislocations in a monolayer
near the edge of an embedded variable-diameter cluster (dislo-
cation emitter). As the diameter of the particles in the emitting
cluster is increased, a dislocation pair is created at one of the
cluster corners. This process can be rationalized as the extension
of the cluster side forcing a misregistry of crystal lattice planes
across the line defined by the edge of the cluster. This misregistry
manifests as a pair of complementary dislocations. While the size
of the embedded cluster is large, stress-mediated forces drive
the negative dislocation away from the cluster, toward the mate-
rial edge where the dislocation is absorbed. The complementary,
positive dislocation remains trapped on the emitter cluster edge.
Later in the operating cycle, the embedded cluster shrinks, which
drives the positive dislocation away. If the positive and negative
dislocations are absorbed by different free surfaces, then a finite
quantity of slip (one Burgers vector) is introduced along the crys-
tal plane defined by the edge of the emitter cluster. To see a video
of this process with a hexagonal emitter cluster, see Movie S1.

To enact cumulative change by the motion of dislocations,
their creation and migration must be repeatable and consis-
tent. Dislocations must only be produced along desired edges
of the cluster. Furthermore, the positive and negative dislo-
cations must be repeatably separated. The cluster geometry
shown in Fig. 2 lacks geometrical asymmetry which would ensure
consistent operation as a dislocation emitter. Several forms of
anisotropy are needed to produce dislocations on one plane only
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A B

Fig. 2. (A) The diameter of variable-diameter particles over the course of
a dislocation production cycle. (B) Cartoon representations of dislocation
creation and migration at the edge of a cluster of variable-diameter par-
ticles (yellow). (B, i) A point in time just after a dislocation pair has been
created at one corner of the embedded cluster. The expansion of the sides
of the cluster has forced a misregistry of lattice planes above and below
the plane defined by the edge of the cluster. This misregistry results in
the creation of two complementary dislocations. The expanded size of the
cluster drives the lower dislocation toward the free edge of the material.
(B, ii) A point during the shrinking phase of diameter change. Shrinking
drives the remaining dislocation toward the edge of the material. (B, iii)
The final result of a successful cycle. Tracer particles (dark) show that a finite
amount of slip has been produced on the plane defined by the edge of the
embedded cluster.

and to repeatably bias their emission. The majority of this study
is concerned with the geometrical features required to consis-
tently produce shear deformation at the edge of an embedded
cluster. In later sections we discuss the process by which cluster
shape can be designed to yield optimal performance as a dislo-
cation emitter. However, we begin by demonstrating some of the
reconfigurations possible through dislocation control, deferring
discussion of the design of cluster shape.

Results
Reconfiguration by Embedded Clusters Designed for Shear on a Sin-
gle Plane. We demonstrate the action of optimized dislocation
emitting embedded clusters through molecular dynamics (MD)
simulation of particle monolayers. Unless otherwise noted, these
monolayers are finite sized, and free edges are used as disloca-
tion sinks. The crystallites are confined to a plane by a downward
force and a repulsive force from a plane supporting it. This con-
figuration mimics a sedimented colloidal layer (but neglects any
effect of surface friction). Embedded clusters compose a small
subset of particles (colored yellow) within the crystallite held
together via harmonic bonds. Bonding eliminates the possibil-
ity of cluster reconfigurations occurring upon successive swelling
cycles. It also results in a cluster that behaves as a connected
body, which may be appropriate for experimental realizations
in which a cluster is prefabricated as a single object and then
embedded into a colloidal monolayer.

We first demonstrate the action of an embedded cluster geom-
etry which was optimized to produce shear slip along a single
glide plane. This optimal geometry involves two subclusters,
with slightly different shapes (explained in detail in later sec-
tions). Fig. 3A shows the state of a crystallite (N = 23, 231) with
one pair of embedded subclusters after many swell/shrink cycles
(Movie S2). As subsequent pairs of dislocations are produced
and migrated to the edge of the crystallite, the domain is sheared
in half. This shearing also produces a net torque on the crystal-
lite, which rotates it. The handedness of this torque is opposite to
that of the torque that would result if this crystallite was sheared
by the application of surface forces.

A key consideration in the shearing operation is the distance
of maximum separation of the dislocation pair. If this distance
is smaller than the dimensions of the crystallite, then the dis-
locations may not reach the boundary. Dislocations that do not
reach the boundary remain in the system and may interfere with
subsequent cycles. This can happen either through backward
migration (particularly the negative dislocation, which can be

reattracted to the cluster from long range) or by producing a
“back pressure” that resists additional dislocation pair creation.
We find that backward migration is a larger problem than back
pressure, because in a back-pressure situation subsequent cycles
tend to create short-lived dislocation pairs that push the original
pair farther away, eventually clearing defects from the vicinity of
the cluster over several cycles.

A related failure mode that we observed is for several vacan-
cies to condense around the embedded cluster, rendering sub-
sequent cycles ineffective in generating dislocation pairs. If the
minimum particle diameter of the shrinking phase is too small,
then cross-slip events occur whereby the negative dislocation
decomposes into vacancies that attach to the surface of the
cluster. Such attached vacancies “poison” the cluster, prevent-
ing subsequent defect production. We were able to suppress
this process by increasing the minimum size of the variable-
diameter particles, so that additional defects were not produced
during the shrinking phase (see Fig. 5A for discussion of the
thresholds of defect creation during the swelling and shrinking
phases). However, below this size we observed farther migra-
tion of the negative dislocation during thold (Fig. 2). We found
that the forces driving dislocation migration away from the clus-
ter also are a function of the cluster geometry, particularly the
double-subcluster arrangement (discussed below).

Shearing on Multiple Planes Simultaneously. Multiple shearing
clusters can be combined together to carry out more com-
plex deformation operations in crystallites. Here we show two
such kinds of compound operations. In this study, we did not
introduce any phase delay between the swelling cycles of the

A

B

C

Fig. 3. Cyclic operation of dislocation-producing clusters (yellow) embed-
ded in circular crystallites. Dark rings are guides to the eye for tracking
plastic deformation, and blue particles have fewer than six nearest neigh-
bors. (A) A single embedded cluster pair, causing shear across one plane.
Snapshots at 0 (i), 25 (ii), and 50 (iii) cycles are shown. (B) Two embedded
cluster pairs in a polar configuration. Snapshots at 0 (i), 20 (ii), and 40 (iii)
cycles are shown. (C) Three embedded cluster pairs in a chiral configuration.
Snapshots at 0 (i), 70 (ii), and 140 (iii) cycles are shown. Cluster pairs oper-
ate together as a dislocation-producing unit. Cluster anisotropy, shape, and
surface notching are critical design parameters for consistent dislocation
production and are discussed below.
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embedded clusters. Such a delay could be exploited to improve
the efficiency and stability of multiple-cluster schemes. However,
here we show that complex material reshaping is possible even
without phase delay. For videos of these examples see Movies
S3–S5.
Slicing. When two embedded shearing clusters are arranged so
that their glide planes are parallel and opposite in sign, then the
slab of material contained between those glide planes is slipped
relative to the rest of the crystallite. We refer to this kind of polar
multiplane shearing as “slicing.” Fig. 3B shows a nonchiral (note
notch positions) slicing operation in a crystallite (N = 23, 321)
containing two pairs of embedded clusters. The even slip pro-
duced by the top and bottom clusters indicates that they are
operating in tandem, without cross-interference. If the two clus-
ters are placed closer to each other, then cross-slip events can
occur with multiple dislocations recombining. This configuration
can be thought of as transporting wave after wave of extra planes
to the crystallite edge, which grows a protrusion on one side while
excavating a cavity on the other. Unlike in the shearing exam-
ple Fig. 3A, there is minimal net rotation of the crystallite here,
because the forces produced by shear are balanced.
Swirling. When the emission directions of multiple embedded
clusters in the same crystallite are arranged in a chiral manner
(Fig. 3C, note the location of cluster notch), then a complex
rotation of material in the crystallite can be accomplished. We
term this chiral multiplane shearing operation as “swirling.” The
effect is to mix and translate sections of the crystallite past each
other, resulting in a flower-like shape. Note that there is a net
rotation of the crystallite, again in the opposite direction to that
which would occur if this process were accomplished with sur-
face forces. The efficiency (plastic slip per swell–shrink cycle) of
this operation is significantly lower (≈1/3) than that of the other
operations we have discussed. This is due to the tendency of clus-
ters to suppress the splitting of other clusters’ dislocation pairs,
resulting in many cycles where only one side of the triangular
arrangement of cluster pairs succeeded in migrating its disloca-
tion pair to the crystallite boundary. This kind of interaction may
be suppressed by introducing a phase offset between the cycles
of the three sides of the triangle. Despite this tendency for cross-
interference between clusters, this example demonstrates that
the biased pair production of the clusters is robust enough to
produce the desired effect with a minimum of control.

Dislocation Emission in a Periodic Domain. In a small crystallite, the
crystal surface acts as a sink for both positive and negative dis-
locations, capturing them and thereby permitting future cycles
to release new dislocation pairs into undistorted crystal regions.
However, dislocations can be absorbed by other crystal defects
as well.

Fig. 4 shows a slicing configuration of clusters embedded in a
periodic crystalline domain (N = 40, 000). The size of the peri-
odic domain was chosen so that for a perfect crystal (at the
temperature of simulation) the pressure is zero. As dislocations
are produced, they traverse the periodic boundaries of the box
and recombine on the opposite side of the cluster they were
created on. This can also be thought of as clusters passing dis-
locations to their periodic images in adjacent periodic domains.
The example shows that multiple clusters on the same glide plane
act as “repeaters,” absorbing their neighbors’ dislocations. In
a real crystal, a line of repeaters therefore should be able to
transport dislocations over very long ranges. Because the line
of repeaters here is made of periodic images, there is no phase
delay between the cycles of adjacent clusters. Much like the chiral
demonstration above, we expect that introducing a phase delay
could improve the operational robustness of a line of repeaters.

Designing High-Performance Embedded Cluster Geometries. We
now take a closer look at the geometry of embedded clusters

A B C

Fig. 4. Cyclic operation of two pairs of clusters (yellow) embedded in
a periodic domain. Clusters “pass” dislocations to their images, result-
ing in a slip band. (A) The initial configuration, before any swell/shrink
cycles. Dark rings are guides to the eye for tracking plastic deforma-
tions, and blue particles have fewer than six nearest neighbors. (B)
System configuration after 30 cycles. (C) System configuration after
60 cycles.

well suited to inducing shear displacement over many cycles.
Good cluster performance depends on several metrics. First,
the dislocations must be produced only on one glide plane.
Once produced, the dislocation pair must be separated as far as
possible, so that the dislocations can reach a surface or other
recombination site. Finally, the dislocation pair must be cre-
ated and separated with the same polarity; i.e., the positive
and negative dislocations should leave in the same direction
on each cycle. We now examine the connection between clus-
ter geometry and performance through each of these three
metrics.
Extensional threshold of defect creation. As embedded clus-
ters swell, the extension of their edges induces crystal plane
misregistry, which eventually nucleates a dislocation pair. To
understand the thresholds for dislocation creation we first study
an embedded cluster with a high aspect ratio rectangular geom-
etry. Expansion of the cluster sides due to isotropic swelling
of the constituent particles produces shear stress that eventu-
ally results in the creation of a dislocation pair. Consider the
effect of length extension, ∆l/D0. Fig. 5 shows defect number
and strain field magnitude data for rectangular clusters subjected
to isotropic particle swelling or shrinking. In these simulations
defects are tracked by identifying particles that have Voronoi
cells without six sides. For particles with six Voronoi neigh-
bors a local affine strain can be calculated using the Voronoi
polygon vertices (37). For snapshots of the Voronoi diagram,
see SI Appendix.

Fig. 5A shows the number of defects (Ndefects) observed for dif-
ferent states of cluster extension or contraction. Fig. 5 A, Inset
shows a rendering of the rectangular cluster. A clear threshold in
defect creation can be seen at an extension of ∆l/D0≈ 2 and a
contraction of ∆l/D0≈−1.5. For extension, only five (C5) and
seven (C7) coordinated defects are created, which is consistent
with the core of a dislocation. For contractions, other coordi-
nations (C4, C8) are also found. The dislocation dipole that is
emitted from a shrinking rectangle cluster represents a miss-
ing partial plane of particles. These types of dislocation dipoles
(vacancy, or intrinsic, dipoles) are unstable in this system, and
we observed that they often decomposed into immobile vacancy
clusters, which is why more varieties of defect coordinations
are observed for cluster contraction. In contrast, during cluster
swelling the emitted dislocations represent the extra plane of par-
ticles that must be ejected to make space. Such interstitial (or
extrinsic) type dislocation dipoles are more likely to leave the
vicinity of the expanding cluster, leaving behind a bound pair of
complementary negative dislocations on the embedded cluster
surface.

Fig. 5B shows the value of the largest affine shear strain
(ηxy) found around the rectangular cluster for various extensions
and contractions. For extensions below the threshold, maximum
shear strain scales in a superlinear fashion. At the threshold
extension, maximum shear values dramatically increase. For
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Fig. 5. Extension and shear thresholds for creation of defects. (A) The num-
ber of 4-, 5-, 7-, and 8-coordinated particles (C4, C5, C7, and C8), as found
from the Voronoi diagram of the crystal. Inset shows a rendering of the
rectangular embedded cluster. (B) Maximum affine shear strain magnitudes
for a rectangular cluster. The creation of dislocation defects coincides with
shear strains of ≈±5%.

extensions, this increase is to the value of affine strain calcu-
lated near the core of a dislocation. For contractions, very large
strain magnitudes are found due to the presence of highly dis-
torted vacancy cluster environments. The behavior of the strain
magnitudes below the yielding point indicates the cause of the
extension/contraction asymmetry. For the pair potential used
here, tension and compression have different material stiffnesses
resulting from the fundamental asymmetry of the pair potential
bonding well. Such strain asymmetry can be manipulated through
changing either the shape of the pair potential or the statepoint
of the material (37).
Controlling dislocation emission. To avoid the creation of extra-
neous dislocations, we desire an embedded cluster geometry that
produces a single dislocation pair on one glide plane with high
repeatability. When the boundary of an embedded cluster is
aligned with a slip plane in the crystal, dislocations tend to be
created along that boundary provided that the extension due to
particle swelling is sufficiently large. Therefore, to minimize the
alignment of all but one cluster edge with slip planes, we employ
a half-ellipse–shaped cluster. The single flat edge of the cluster is
aligned with a slip plane which we denote as (00). Other planes

exist within the same low-energy slip system; for symmetric half
ellipses there are two other equivalent planes which we refer to
as (01) and (01̄).

We quantify the propensity of shear strain on a slip plane to
produce a dislocation, using the negative autoconvolution of the
shear field sampled around a cluster at swelling values below the
defect creation threshold. For a shear field with perfect inver-
sion symmetry on a slip plane, the maximum of the negative
autoconvolution will be

Amax =max (ηxy(x )∗− ηxy(x )) =
∑
x

η2xy(x ) [1]

which is proportional to the shear energy density integrated
along that slip plane (in the linear elastic limit). We use Amax

to identify which slip planes are likely to create dislocations as
the shear strain threshold is approached. Fig. 6A shows Amax

with respect to the position of the half-ellipse cluster. The two
families of slip planes are shown. The (00) family contains the
largest peak, at the flat bottom edge of the ellipse, with a sec-
ondary peak at the top of the rounded cluster. The rounding of
the cluster suppresses dislocation emission from the top surface.
Also shown is Amax for the (01) slip planes. This slip plane gen-
erally has a smaller propensity for dislocation emission than the
designed (00) plane. However, as the ratio of length l to width
w of the half-ellipse cluster is changed, the difference between

A B

C

Fig. 6. Strain fields around single half-ellipse clusters. (A) Maxima of the
negative shear autoconvolution, converted to energy units using the lin-
ear shear modulus (G). The values for (00) (green) and (01) (brown) family
planes are shown. Uncertainty is represented with shaded bounding curves
for both lines. (B) The relative difference of peak negative shear autoconvo-
lution between slip families as the width of the half ellipse is increased. (C)
Shear strain along the primary glide plane for single half-ellipse clusters of
aspect ratios.
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the primary (00) peak and the (01) peak decreases relative to
the (00) maximum (Fig. 6B). This means that wide half ellipses
are prone to spurious emission of dislocations into the (01) slip
planes. To ensure that single dislocations are produced with high
repeatability, narrow half-ellipse clusters with as small as pos-
sible w/l ratios should be used. For plots of shear strain and
negative shear autoconvolution around embedded clusters, see
SI Appendix.
Ensuring dislocation pair separation. After dislocations are cre-
ated by the swelling of an embedded cluster, they are driven
to leave the vicinity of the cluster by the strain fields present
around it. During swelling (shrinking), the positive (negative)
dislocation is driven away from the embedded cluster. If the
pair of dislocations are allowed to recombine, then no net slip
will result. Therefore, it is important that the dislocation pair
be as widely separated as possible. The forces that primarily
motivate the motion of dislocations come from shear strain inter-
actions. We sample the magnitude of shear strain present on
the primary ((00)) glide plane near a single half-ellipse clus-
ter (Fig. 6C). For embedded clusters of a given length and
different aspect ratios, as width is increased the shear strain
along the primary slip plane reaches farther. Therefore, wider
(and thus larger) clusters are better at forcing dislocations to
glide away.
Double half-ellipse clusters. By examining the trends of embed-
ded clusters with a half-ellipse shape we have concluded that
clusters with larger areas (i.e., lower aspect ratios) are more
effective at sweeping dislocations from their vicinity. However,
low aspect-ratio clusters are more likely to produce extrane-
ous dislocations on other slip planes. To balance the advantages
of large and small half-ellipse clusters, we propose a double
half-ellipse cluster shape. In this geometry two half ellipses,
separated by a vertical offset, function as a single dislocation-
producing unit. This geometry has several advantages over the
single half-ellipse cluster.

First, double half-ellipse clusters have a reduced tendency to
emit extraneous dislocations compared to single half ellipses of
the same total area. Fig. 7A shows the negative shear autoconvo-
lution maxima for the (00) and (01) family of slip planes. Fig. 7B
shows the relative difference between the maxima for the (00)
family and the (01) family as a function of the vertical separation
between the half ellipses. The red horizontal line indicates the
relative difference for a single half ellipse of the same area. For
small separations, the relative likelihood of extraneous emission
is similar to that of a single half ellipse with the same total area.
However, for larger separations, the relative difference between
maxima in the (00) family and (01) family is increased above the
case of a single half ellipse.

Second, the driving shear strain that pushes dislocations away
from the embedded cluster is increased at long range for the
double half-ellipse cluster geometry compared to the single
ellipse. Fig. 7C shows the shear strain present on the primary
slip plane as a function of distance to the cluster edge for
double half ellipses. The red curve is the shear strain (from
Fig. 6C) of a single half ellipse with the same total area. For
large vertical separations (∆y/D0> 20) the shear strain at long
ranges is similar to or less than that from a single half ellipse.
However, for small and moderate separations (∆y/D0< 20)
the shear strains, especially at long range, are larger in mag-
nitude for the double half-ellipse geometry than the sin-
gle half ellipse. This is a larger effect for positive strains,
another result of the tension–compression asymmetry present
due to the nature of the particle pair potential. The increased
shear strain magnitude at long range is a result of the addi-
tional flat edge of the second half ellipse. This feature pro-
duces more shear strain than the relatively flat sides of a
wide single half ellipse (see SI Appendix for plots of shear
strain).

A B

C

Fig. 7. Strain fields around double half-ellipse clusters. (A) Maxima of the
negative shear autoconvolution, converted to energy units using the lin-
ear shear modulus (G). The values for (00) (green) and (01) (brown) family
planes are shown. Uncertainty is represented with shaded bounding curves
for both lines. (B) The relative difference of peak negative shear autocon-
volution between slip families as the separation between the top and the
bottom half ellipse is increased. The red line is the relative difference (from
Fig. 6B) for a single half ellipse with the same area. (C) Shear strain along
the primary glide plane for double half-ellipse clusters with different off-
sets. The red line is the shear strain (from Fig. 6C) for a single half ellipse
with the same area.

Biasing dislocation emission. By investigating the thresholds for
dislocation creation as well as the distribution of shear strain
around the embedded cluster, we arrive at a cluster design that
produces and drives dislocations reliably on one slip plane. To
enact cumulative change to the crystallite’s surface, dislocations
of opposite handedness must be consistently emitted in oppo-
site directions. One way to accomplish this biasing is to make
a notch in the cluster edge that defines the primary slip plane.
This breaks the reflection symmetry of the cluster and results in
biased dislocation emission. Fig. 8 shows the slip accumulated
in crystallites (N = 13, 051) containing embedded single half-
ellipse clusters. As the notch in their primary slip plane is shifted
from the center of the cluster, dislocations are more likely to be
emitted directionally depending on their handedness, resulting in
cumulative slip.

The notch causes two related effects that are responsible for
biased emission. First, when the notch is close to a corner, it
reduces the likelihood of dislocation pair creation at that cor-
ner. For the primary slip plane, this means that the dislocation
pair is first created at the corner farthest from the notch. The
positive dislocation is then swept from the vicinity of the cluster
by compressive strain fields.

Second, we find that the notch also tends to attract the neg-
ative dislocation during the shrinking phase of the cycle. This
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Fig. 8. Biasing of dislocation emission. Shown is cumulative slip over 50
cycles for clusters with different degrees of notch asymmetry. Greater asym-
metry of the edge that defines the primary slip plane leads to greater
robustness of dislocation pair splitting.

often results in the negative dislocation leaving the cluster from
the notched side and thereby splitting the dislocation pair apart.
The attraction of the negative dislocation to the notched side of
the cluster as it returns from its maximum swelling diameter is a
less consistent effect than that of the notch on the location of ini-
tial pair creation. As such, this attraction can limit the efficiency
of dislocation pair splitting. This symmetry-breaking effect was
found to be insensitive to the shape of the notch.

The Geometry and Action of High-Performing Clusters. High-
performing dislocation-emitting clusters combine the features
described above. For a detailed diagram of the highest-
performing embedded cluster we found in this study, see SI
Appendix, Fig. S4. We employ embedded clusters composed
of double half ellipses with length l = 30D0 and width w =

6
√

3D0/2. The swelling and shrinking diameters (ηpD0 and
ηnD0, respectively) of constituent particles were chosen to pro-
duce a length extension of ∆lp = l(ηp − 1) = 2.0 and ∆ln =
l(ηn − 1) =−1.2. Fig. 9 shows several important steps in the
swell/shrink cycle of the high-performance cluster geometry.
In Fig. 9, the Voronoi cells around each particle are shown
as polygons. Non–6-coordinated particles are colored by their
Voronoi cell vertex number. Fig. 9A shows a time during clus-
ter swelling immediately after dislocation pair creation. We see
that the pair was created at the leading edge. Stresses at the
trailing edge also produced particles with disturbed coordina-
tion shells, but this dislocation pair will quickly recombine. Fig
9B shows a time during the maximum diameter hold. Dur-
ing this time the negative dislocation remains trapped near the
cluster, while the positive dislocation migrates away to escape
the compressed environment near the cutting edge. Fig. 9C
shows a time during the minimum diameter hold part of the
cycle. During this hold, the negative dislocation is repelled by
the tensile environment around the cluster. If the positive dis-
location had not migrated far enough away from the cluster
during the maximum diameter holding phase, then it could be
attracted back during this part of the cycle. Due to the intrinsic
tension–compression asymmetry of the shifted Lennard-Jones
pair potential used for particle interactions, driving the negative
dislocation to migrate is the limiting step. Driving the positive
dislocation is comparatively easy. See Movie S6 for a video of
this process.

Discussion
We have shown how controlled production of dislocations can
be used to change the shape of a colloidal crystal mono-
layer. Beyond the results we have presented, several aspects of
this method warrant discussion. We then explore the relation-
ship between our method and those used in swarm robotics
studies.

Reversibility of Operation. In this study, particles of tunable diam-
eter are bonded together into clusters and so considered as
permanent, although flexible, units. The direction of dislocation
emission biasing is entirely set by the geometry of the clus-
ter, in particular by the placement of the notch (SI Appendix,
Fig. S4C). To have a cluster that can reverse its direction of
biased dislocation emission, it would be necessary to have a
cluster in which the notch can be changed in situ. This could
be achieved by using a multiplexing scheme where there are
three types of particles that can be independently swelled and
deswelled. One type would comprise the majority of a cluster
with two notches. The other two types would fill these notches.
By activating the main body of the cluster and only one of
the notches, the direction of operation of the cluster could be
selected.

The Role of Temperature. Temperature plays an important role in
the process of splitting a dislocation pair via elastic forces. The
influence of temperature comes into play in several ways. First,
as the embedded cluster changes size, it imposes long-range dis-
tortions to the crystal that drive the motion of dislocations. The
magnitude of thermal fluctuations in the strain field sets the
range at which the embedded cluster’s strain field is effective at
motivating dislocation motion. At low (high) temperatures, the
influence of the cluster is strong (weak) relative to thermal fluc-
tuations far from the cluster. However, at lower temperatures
dislocations and vacancies are less mobile. Therefore, they

A

B

C

Fig. 9. Important points in the swell/shrink cycle of a notched half-ellipse
cluster. Voronoi cells surrounding each particle are shown colored by their
Voronoi coordination, C (or yellow, if representing a variable-diameter par-
ticle). (A) The initial split of the dislocation pair has just occurred during
the swelling phase. Another dislocation pair can be seen at the left edge
of the embedded cluster; however, this pair quickly recombines. (B) During
the large diameter holding phase, the negative dislocation remains trapped
on the cluster surface while the positive dislocation is repulsed by the com-
pressed environment of the swollen cluster. (C) As the cluster shrinks to its
original diameter and below, the negative dislocation is drawn toward the
notch end and then repelled from the tensile strains present around the
shrunken cluster.
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will not be able to naturally diffuse and heal out, meaning
that an escalating pileup of damage due to cluster cycling
is more common. The temperature used in this study repre-
sents a compromise between the beneficial and adverse effects
of low temperature. We expect that in addition to tempera-
ture, the depth and steepness of the interaction potential can
be tuned to achieve similar effects. There likely exist parti-
cle interactions that produce much better dislocation mobility
characteristics (i.e., a pair potential with a more symmetric
attractive well).

Nonzero temperatures further enable the transport of mate-
rial through the crystal via diffusive means, as well as by
free-surface hopping. Such effects could become important for
long timescales or temperature scales approaching the melting
transition of the material. Under such conditions, the shape
changes produced by the action of dislocation-emitting clusters
would be working against diffusion-driven shape changes, which
would favor high-symmetry (i.e., circular) crystallite shapes. The
production and migration of dislocations can occur at zero
temperature (when all diffusive motion is frozen out), driven
entirely by the mechanical stresses applied via the swelling clus-
ter. Therefore, the balance of thermally driven mass transport
and dislocation-mediated mass transport can be tuned with some
freedom. In the results presented here, we exploit a balance of
temperature where surface diffusion of crystallites is minor on
the timescales of simulations, but the temperature is still high
enough to have some beneficial effect in “healing” undesirable
defect pileups.

For the results presented here, each dislocation-producing
cycle lasted approximately 10 times longer than the character-
istic diffusion time of a Brownian particle (as determined by the
ratio of particle diameter and self-diffusivity, τ =R2/Dself ) (38).
This timescale is the minimum cycle time that we found to be
effective in reliably allowing dislocation pairs to separate and
absorb to sinks. Fundamentally, the nature of the dislocation
emission cycle would not be changed by increasing its duration
manyfold. However, at sufficiently long timescales, competition
from bulk diffusion of particles in the material could combat
shape change. This range of time is far outside the scale investi-
gated here.

Swellable Particles in Vitro. In theory, many polymer-based col-
loids could be swollen by changing their solvent environment.
The surrounding bath’s composition would be changed over the
course of one cycle to create cyclic particle expansion. There-
fore, the time required for each cycle would depend upon the
maximum rate that the solvent’s composition could be changed
(without introducing bulk flows that destroy the colloidal crys-
tallite). Highly swellable particles such as produced by coating
a gold nanoparticle with DNA surface ligands (35) suggest the
possibility to engineer particle response in terms of both sol-
vent concentration and species. While chemical swelling may
be rate limited by mass transport in the solvent, it lends itself
readily to sensing applications in a biological or microfluidic
environment. Additionally, a class of hydrogels based on poly(N-
isopropylacrylamide) (poly(NIPAM)) opens the possibility for
thermally or optically swellable particles (32, 33, 36). Nanoparti-
cles that are both chemically and thermally responsive have also
been demonstrated (34).

In the present study, particle size changes of 20% were found
optimal for robust defect creation. Poly(NIPAM) particles are
frequently reported to be capable of 100% or greater particle
diameter changes near room temperature (32), far in excess of
what is required for defect creation. Similarly, DNA-coated gold
particles have been reported to be capable of 40% or more inter-
particle spacing change based on solvent environment (35). The
required per-particle swellability for defect creation is set by the
ratio of the embedded cluster’s longest dimension and the lat-

tice spacing of the crystal. Therefore, if a cluster is composed of
many small particles, the per-particle diameter change required
to produce defects will be even less than the 20% used here. An
additional concern is changes to the stiffness of particles dur-
ing swelling. In this study all particles are treated as effectively
hard; however, in practice the compliance of particles changes
with swelling (39). If particles in the swollen state have elas-
tic properties comparable to those of the colloidal crystal, then
they may be too compliant to impose the required strain which
drives defect creation. However, this is unlikely, since the elastic
properties of nearly all conventional solids are many orders of
magnitude larger than colloidal materials due to the small size
of atoms. Poly(NIPAM), for example, has a Young’s modulus
of several kilopascals even in its most expanded, compliant state
(39) (see the following section for a discussion of colloidal crystal
strength).

The embedded cluster of swellable particles that produces
dislocations could be created through a variety of tactics. Indi-
vidual arrangements of swellable particles can be prepared, for
instance, using optical holography (40). However, the real poten-
tial of the proposed scheme would be realized by preparing the
embedded clusters as a prefabrication step, perhaps by tem-
plated assembly (41). Once assembled they would be available as
a bonded cluster for addition into a passive colloidal layer, during
the growth of that layer. An alternative fabrication method would
be to simply produce a monolithic object of the correct size and
shape using lithographic methods, which may permit straightfor-
ward creation of arbitrary numbers of prefabricated dislocation
emitters.

Material Strength of Colloidal Robots. The ultimate mechanical
strength of a reconfigurable material is a result of both the
bonding strength between subunits and the energetics of plas-
tic deformation (42). The Young’s modulus of the 2D material
presented here can be estimated from the pair potential used
to model attractive interactions. In 2D, under the harmonic
solid approximation, the Young’s modulus Y = d2U /dr2(r =
r0), where U is the isotropic pair potential, and r0 is the rest-
ing length of the interparticle bond. This measure has units of
energy per area (or force per length) in 2D. For the pair poten-
tial used here the value of Young’s modulus is Y ≈ 28× ε/D2,
where ε is a parameter of the Lennard-Jones potential describ-
ing the bonding energy well depth and D is particle diameter. For
larger bonding energy values and smaller diameters, the stiffness
of the material would increase. For 0.5-m colloidal particles at
room temperature (with bonding strength 5 kbT ), this value is
≈ 10−6 N/m.

The ultimate strength of a material does not solely depend
on its Young’s modulus, however. Plastic deformation mecha-
nisms allow materials to be reshaped by external stresses well
before the bonds between all subunits are broken. Indeed, it
is this property that we are exploiting to efficiently drive shape
change in a colloidal crystal. The onset of plastic deformation
is a complex, material-dependent process; however, in metals it
typically occurs at material strain conditions in the vicinity of
0.2% (42). For the example of 0.5-m colloids, this yielding strain
would require a stress of ≈ 20 nN/m, beyond which we should
expect the mechanisms of plastic deformation to determine
the strength of the assembly. Plastic deformation mechanisms
in metals are predominantly dislocation-mediated processes, so
by taking control of dislocations we may further control the
mechanical properties of the assembly. For additional discussion,
see the work of Gerbode et al. (43) for dislocation pinning in 2D
colloidal materials and VanSaders and Glotzer (44) for pinning
in 3D.

Dislocation Emitters in 3D Materials. The proposed dislocation-
based reconfiguration scheme can be naturally extended to 3D

8 of 10 | PNAS
https://doi.org/10.1073/pnas.2017377118

VanSaders and Glotzer
Sculpting crystals one Burgers vector at a time: Toward colloidal lattice robot swarms

D
ow

nl
oa

de
d 

fr
om

 h
ttp

s:
//w

w
w

.p
na

s.
or

g 
by

 "
U

N
IV

E
R

SI
T

Y
 O

F 
C

H
IC

A
G

O
, T

H
E

 J
O

H
N

 C
R

E
R

A
R

 L
IB

R
A

R
Y

" 
on

 J
ul

y 
7,

 2
02

4 
fr

om
 I

P 
ad

dr
es

s 
20

5.
20

8.
12

1.
24

9.

https://doi.org/10.1073/pnas.2017377118


A
PP

LI
ED

PH
YS

IC
A

L
SC

IE
N

CE
S

crystalline materials, albeit with additional considerations that
warrant further study. Consider 2D emitters presented here as
slices of a 3D material; the crystal could be extended indefinitely
into the third dimension. This would transform the shown circu-
lar crystallites into crystalline fibers, with the embedded cluster a
fiber-like core with cross-section as shown in SI Appendix, Fig. S4.
To limit the fiber-like emitting cluster to a finite size, we can con-
sider looping the fiber around and joining the ends. This cluster,
now a fiber joined into a loop, would through swelling produce a
dislocation line along its length. This would naturally produce a
dislocation loop.

Such loops are stable, mobile defects in some crystalline sys-
tems (45). However, additional complications can arise in some
cases. In 2D, a complementary pair of dislocations are produced
through the action of the cluster, and in 3D a pair of loops
would be created. These loops may not have the same mobilities
or even stability in the crystalline system (46). For example, in
many face-centered cubic materials the interstitial (or extrinsic)
loop is stable and mobile, while the vacancy (or intrinsic) loop is
unstable and decomposes into other defect species once created.
Therefore, using loops to reconfigure 3D materials is possible,
but further study is needed to understand the limitations of loop
stability and mobility.

Dislocations as Metamodules. The dislocation-mediated material
transport presented here can be compared to other schemes to
redistribute mass within a (macroscopic) robotic swarm. When
a reconfigurable robot is composed of densely packed incom-
pressible subunits (modules), the motion of modules to enable
ensemble reshaping must occur entirely on the surface, as there
is no room for modules to move through the bulk. As the num-
ber of modules in a robot is increased, the surface area grows
much slower than the volume. Therefore, for large numbers
of modules this surface restriction is a potential limitation that
could cap the reconfiguration rate (12). Designs like the Crys-
talline Robot (4) and the Telecube (5) aimed to address this
issue by making modules capable of expansion or contraction.
In these robots modules contract in sequence, transporting mass
through the bulk of the robot array under detailed algorith-
mic control of all module docking/undocking steps. However,
this mode of operation shares similarities to a family of crys-
talline defects that include dislocation loops and crowdions. In
a crowdion, a linear chain of N crystal lattice sites have N + 1
(interstitial type) or N − 1 (vacancy type) particles occupying
them (47). Similarly, dislocation loops are arrangements of crys-
tal lattice planes where N + 1 or N − 1 planes occupy the space
of N planes in a distributed manner. Unlike more common inter-
stitials and vacancies, the extra or missing particle(s) is (are)
not localized to a single site, but instead effectively spread out
over many sites with fractional occupancy. Ensembles of cubes
simulated with thermal agitation have been shown to display
vacancy-type crowdions as an emergent behavior (48, 49). This
suggests that stochastic versions of cube-type lattice robots might
display crowdion-type mass transport without careful algorithmic
control of neighbor bonding and only mild module compress-
ibility. Dislocation loops are a more general phenomenon, for
instance possible in face-centered cubic crystals (45).

Bulk reconfiguration has also been proposed in incompress-
ible lattice robots. Clearly, insufficient room exists to efficiently
transport modules through a space-filling or dense-packed bulk,
so authors have proposed porous assembly types that alleviate
this issue (12, 50–52). This shifts the focus of reconfiguration
planning away from individual modules to groups of modules
(referred to as metamodules), which maintain an open structure.
The concept of a metamodule that maintains a sufficiently low
density to permit transport can be directly compared to a disloca-
tion. Dislocations are emergent phenomena that exactly perform
the task that metamodules are designed for. Bulk material shape

change results in “on-the-fly” dislocation creation to transport
mass and enable plastic deformation. Rosa et al. (51) proposed
a similar concept in the form of open holes that are shepherded
around the interior of a lattice robot. These holes perform the
dual function of transporting (negative) mass through the bulk
and providing a low-density environment to allow for recon-
figuration. From the behavior of crystalline materials under
deforming stresses, we know that such holes are not the lowest
free-energy motif that accomplishes these goals; instead, nature
has selected dislocations as its metamodule of choice.

The ability of lattice robots to employ dislocations as on-
demand emergent metamodules will depend upon the connec-
tion type present between neighbors. Many proposed crystalline
robots have rigid connections between neighbors that are toggled
according to algorithmic planning (4–6, 11). This process of latch-
ing onto a new neighbor represents a significant fraction of the
difficulty of creating functional prototypes. Others have shown
that near-isotropic bonding between neighbors is also a feasible
strategy for robot design without a well-defined crystal structure
(8, 9). However, we show here that isotropic subunit interactions
coupled with a crystalline arrangement unlock the potential of
using dislocations as emergent metamodules. Lattice robots with
stiff, angle-dependent interactions are equivalent to covalently or
ionically bonded materials. Dislocations are typically not impor-
tant to the deformation of these materials, with fracture instead
being the primary mode of shape change. For robotics applica-
tions, particularly during reconfiguration, the ensemble is desired
to behave more like a ductile metal. The potential power of our
work lies in the scalability of employing dislocations. Since dis-
locations are emergent, stable structures with high mobility, no
control need be exerted to maintain them as they migrate. In our
scheme, only the collective action of a small number of subunits
together is sufficient to create and move dislocations, thereby
reshaping the larger domain.

Conclusion
In this study we simulated a 2D colloidal system in which clusters
of tunable-diameter particles are embedded. By cyclic swelling
and shrinking of the particles in these clusters, dislocations were
created and motivated to glide. Through design of the cluster
shape, dislocation emission and migration can be strongly biased.
Biased dislocation emitters fundamentally exert a shear slip
effect, and by arranging multiple emitters in different configura-
tions, different compound operations can be accomplished. This
work presents an alternative mechanism for sculpting colloidal
crystallites. We also explored how dislocations fulfill for colloids
the role sought by metamodules in lattice robotics research and
suggest that dislocations should be considered as a fundamental
unit of reconfiguration in those systems as well.

Materials and Methods
All MD simulations reported here were performed with HOOMD-blue (v2.0)
(53, 54). Simulations were run using the Extreme Science and Engineering
Discovery Environment (XSEDE) (55). All particles interact through a shifted
Lennard-Jones potential (56), where the origin is shifted so that the surface
of the particle is the potential’s zero isoenergy surface. The value of σ used
in this potential was set to 0.75, and the radial shifting was chosen so that
the minimum (located at σ21/6 in the unshifted case) is at a distance of
D0 = 21/6. This distance is the minimum-energy isosurface of the pair poten-
tial and is taken to represent the particle’s physical surface. The depth of
the attractive well was set to ε= 1. Simulations were carried out via Brow-
nian integration as implemented in HOOMD-blue. System thermal energy
was held at kT/ε= 0.22, and particle mass was fixed at m = 1 (in simulation
units). References in the text to energy, mass, time, and length scales will
use these values for nondimensionalization. System temperature and pair
potential parameters were chosen to produce solid-phase crystallites with
realistic defect dynamics.

During a swelling or shrinking cycle, a cluster composed of a subset of
particles changes its diameter by changing the radial shift applied to the
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pair potential in small discrete increments (relative to the average distance
between particles). The value of ε and σ used in the pair potential is kept
constant at all times. These tunable-diameter particles are harmonically
bonded to each other. The length of this harmonic bond is scaled along
with the particle diameters during a simulation.

Renderings of particle simulations use a consistent color scheme,
described in the Fig. 3 legend. To determine this coloring, the pair corre-
lation function g(r) is computed for the entire system, and the coordination
number of a particle is determined by counting neighbors within a cutoff of
4
3 D0 (approximately halfway between the first and second peaks in g(r)).

Data Availability. All study data are included in this article and SI Appendix.

ACKNOWLEDGMENTS. This work was supported as part of the Center for
Bio-Inspired Energy Science, an Energy Frontier Research Center funded by
the US Department of Energy, Office of Science, Basic Energy Sciences under
Award DE-SC0000989. B.V.S. acknowledges a University of Michigan Rack-
ham Predoctoral Fellowship. This research utilized computational resources
and services supported by Advanced Research Computing at the University
of Michigan, Ann Arbor, and used the Extreme Science and Engineering Dis-
covery Environment (XSEDE), which is supported by NSF Grant ACI-1053575
(XSEDE Award DMR 140129).

1. E. Yablonovitch, T. J. Gmitter, K. M. Leung, Photonic band structure: The face-
centered-cubic case employing nonspherical atoms. Phys. Rev. Lett. 67, 2295–2298
(1991).

2. H. O. Moser, B. D. F. Casse, O. Wilhelmi, B. T. Saw, Terahertz response of a microfab-
ricated rod–split-ring-resonator electromagnetic metamaterial. Phys. Rev. Lett. 94,
063901 (2005).

3. A. Brunete et al., Current trends in reconfigurable modular robots design. Int. J. Adv.
Rob. Syst. 14, 1729881417710457 (2017).

4. D. Rus, M. Vona, Crystalline robots: Self-reconfiguration with compressible unit
modules. Aut. Robots 10, 107–124 (2001).

5. J. W. Suh, S. B. Homans, M. Yim, “Telecubes: mechanical design of a module for
self-reconfigurable robotics” in Proceedings 2002 IEEE International Conference on
Robotics and Automation (IEEE, 2002), vol. 4, pp. 4095–4101.

6. K. Gilpin, A. Knaian, D. Rus, “Robot pebbles: One centimeter modules for pro-
grammable matter through self-disassembly” in 2010 IEEE International Conference
on Robotics and Automation (IEEE, 2010), pp. 2485–2492.

7. S. C. Goldstein, J. D. Campbell, T. C. Mowry, Programmable matter. Computer 38,
99–101 (2005).

8. M. Shimizu, A. Ishiguro, T. Kawakatsu, “Slimebot: A Modular Robot That Exploits
Emergent Phenomena” in Proceedings of the 2005 IEEE International Conference on
Robotics and Automation (IEEE, 2005), pp. 2982–2987.

9. S. Li et al., Particle robotics based on statistical mechanics of loosely coupled
components. Nature 567, 361–365 (2019).

10. R. Fitch, Z. Butler, Million module march: Scalable locomotion for large self-
reconfiguring robots. Int. J. Robot Res. 27, 331–343 (2008).

11. G. Aloupis et al., Linear reconfiguration of cube-style modular robots. Comput. Geom.
42, 652–663 (2009).

12. J. Lengiewicz, P. Hołobut, Efficient collective shape shifting and locomotion of
massively-modular robotic structures. Aut. Robots 43, 97–122 (2019).

13. M. Rubenstein, A. Cornejo, R. Nagpal, Programmable self-assembly in a thousand-
robot swarm. Science 345, 795–799 (2014).

14. J. Palacci, S. Sacanna, A. P. Steinberg, D. J. Pine, P. M. Chaikin, Living crystals of light-
activated colloidal surfers. Science 339, 936–940 (2013).

15. A. Altemose et al., Chemically controlled spatiotemporal oscillations of colloidal
assemblies. Angew. Chem. Int. Ed. 56, 7817–7821 (2017).

16. J. Yu, B. Wang, X. Du, Q. Wang, L. Zhang, Ultra-extensible ribbon-like magnetic
microswarm. Nat. Commun. 9, 3260 (2018).

17. B. Wang et al., Reconfigurable swarms of ferromagnetic colloids for enhanced local
hyperthermia. Adv. Funct. Mater. 28, 1705701 (2018).

18. B. Yigit, Y. Alapan, M. Sitti, Programmable collective behavior in dynamically self-
assembled mobile microrobotic swarms. Adv. Sci. 6, 1801837 (2019).

19. H. Massana-Cid, F. Meng, D. Matsunaga, R. Golestanian, P. Tierno, Tunable self-healing
of magnetically propelling colloidal carpets. Nat. Commun. 10, 2444 (2019).

20. H. Xie et al., Reconfigurable magnetic microrobot swarm: Multimode transformation,
locomotion, and manipulation. Sci. Robot. 4, eaav8006 (2019).

21. W. T. M. Irvine, A. D. Hollingsworth, D. G. Grier, P. M. Chaikin, Dislocation reactions,
grain boundaries, and irreversibility in two-dimensional lattices using topological
tweezers. Proc. Natl. Acad. Sci. U.S.A. 110, 15544–15548 (2013).

22. P. Schall, I. Cohen, D. A. Weitz, F. Spaepen, Visualizing dislocation nucleation by
indenting colloidal crystals. Nature 440, 319–323 (2006).

23. W. T. M. Irvine, V. Vitelli, P. M. Chaikin, Pleats in crystals on curved surfaces. Nature
468, 947 (2010).

24. F. A. Lavergne, A. Curran, D. G. A. L. Aarts, R. P. A. Dullens, Dislocation-controlled for-
mation and kinetics of grain boundary loops in two-dimensional crystals. Proc. Natl.
Acad. Sci. U.S.A. 115, 6922–6927 (2018).

25. G. E. Fernandes, D. J. Beltran-Villegas, M. A. Bevan, Interfacial colloidal crystallization
via tunable hydrogel depletants. Langmuir 24, 10776–10785 (2008).

26. T. Gong, D. T. Wu, D. W. M. Marr, Two-dimensional electrohydrodynamically induced
colloidal phases. Langmuir 18, 10064–10067 (2002).

27. S. O. Lumsdon, E. W. Kaler, O. D. Velev, Two-dimensional crystallization of micro-
spheres by a coplanar AC electric field. Langmuir 20, 2108–2116 (2004).

28. D. Du, D. Li, M. Thakur, S. L. Biswal, Generating an in situ tunable interaction
potential for probing 2-D colloidal phase behavior. Soft Matter 9, 6867–6875 (2013).

29. P. L. Biancaniello, A. J. Kim, J. C. Crocker, Colloidal interactions and self-assembly
using DNA hybridization. Phys. Rev. Lett. 94, 058302 (2005).

30. M. Grzelczak, J. Vermant, E. M. Furst, L. M. Liz-Marzán, Directed self-assembly of
nanoparticles. ACS Nano 4, 3591–3605 (2010).

31. V. Lotito, T. Zambelli, Approaches to self-assembly of colloidal monolayers: A guide
for nanotechnologists. Adv. Colloid Interface Sci. 246, 217–274 (2017).

32. H. Senff, W. Richtering, Temperature sensitive microgel suspensions: Colloidal phase
behavior and rheology of soft spheres. J. Chem. Phys. 111, 1705–1711 (1999).

33. J. Zhang, X. Jiang, Y. Zhang, Y. Li, S. Liu, Facile fabrication of reversible core
cross-linked micelles possessing thermosensitive swellability. Macromolecules 40,
9125–9132 (2007).

34. X. Jiang, Z. Ge, J. Xu, H. Liu, S. Liu, Fabrication of multiresponsive shell cross-linked
micelles possessing pH-controllable core swellability and thermo-tunable corona
permeability. Biomacromolecules 8, 3184–3192 (2007).

35. J. A. Mason et al., Contraction and expansion of stimuli-responsive DNA bonds in
flexible colloidal crystals. J. Am. Chem. Soc. 138, 8722–8725 (2016).

36. I. Gorelikov, L. M. Field, E. Kumacheva, Hybrid microgels photoresponsive in the near-
infrared spectral range. J. Am. Chem. Soc. 126, 15938–15939 (2004).

37. B. VanSaders, J. Dshemuchadse, S. C. Glotzer, Strain fields in repulsive colloidal
crystals. Phys. Rev. Mater. 2, 063604 (2018).

38. A. Einstein, Investigations on the Theory of the Brownian Movement (Dover
Publications, New York, NY, 1956).

39. T. R. Matzelle, G. Geuskens, N. Kruse, Elastic properties of poly(N-isopropyla-
crylamide) and poly(acrylamide) hydrogels studied by scanning force microscopy.
Macromolecules 36, 2926–2931 (2003).

40. D. G. Grier, Y. Roichman, Holographic optical trapping. Appl. Optic. 45, 880–887
(2006).

41. Y. Yin, Y. Lu, B. Gates, Y. Xia, Template-assisted self-assembly: A practical route to
complex aggregates of monodispersed colloids with well-defined sizes, shapes, and
structures. J. Am. Chem. Soc. 123, 8718–8729 (2001).

42. W. Callister, D. Rethwisch, Fundamentals of Material Science and Engineering: An
Integrated Approach (John Wiley & Sons, Hoboken, NJ, 2008).

43. S. J. Gerbode, S. H. Lee, C. M. Liddell, I. Cohen, Restricted dislocation motion in
crystals of colloidal dimer particles. Phys. Rev. Lett. 101, 058302 (2008).

44. B. VanSaders, S. C. Glotzer, Pinning dislocations in colloidal crystals with active
particles that seek stacking faults. Soft Matter 16, 4182–4291 (2020).

45. B. VanSaders, S. C. Glotzer, Designing active particles for colloidal microstructure
manipulation via strain field alchemy. Soft Matter 15, 6086–6096 (2019).

46. Y. N. Osetsky, D. J. Bacon, A. Serra, B. N. Singh, S. I. Golubov, Stability and mobil-
ity of defect clusters and dislocation loops in metals. J. Nucl. Mater. 276, 65–77
(2000).

47. H. R. Paneth, The mechanism of self-diffusion in alkali metals. Phys. Rev. 80, 708–711
(1950).

48. F. Smallenburg, L. Filion, M. Marechal, M. Dijkstra, Vacancy-stabilized crystalline order
in hard cubes. Proc. Natl. Acad. Sci. U.S.A. 109, 17886–17890 (2012).

49. B. van der Meer, R. van Damme, M. Dijkstra, F. Smallenburg, L. Filion, Revealing a
vacancy analog of the crowdion interstitial in simple cubic crystals. Phys. Rev. Lett.
121, 258001 (2018).

50. K. Stoy, R. Nagpal, “Self-repair through scale independent self-reconfiguration” in
2004 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS)
(IEEE, 2004), vol. 2, pp. 2062–2067.

51. M. De Rosa, S. Goldstein, P. Lee, J. Campbell, P. Pillai, “Scalable shape sculpting via
hole motion: motion planning in lattice-constrained modular robots” in Proceedings
2006 IEEE International Conference on Robotics and Automation (IEEE, 2006), pp.
1462–1468.

52. D. J. Dewey et al., “Generalizing metamodules to simplify planning in modular
robotic systems” in 2008 IEEE/RSJ International Conference on Intelligent Robots and
Systems (IEEE, 2008), pp. 1338–1345.

53. J. A. Anderson, C. D. Lorenz, A. Travesset, General purpose molecular dynamics
simulations fully implemented on graphics processing units. J. Comput. Phys. 227,
5342–5359 (2008).

54. J. Glaser et al., Strong scaling of general-purpose molecular dynamics simulations on
GPUs. Comput. Phys. Commun. 192, 97–107 (2015).

55. J. Towns et al., Xsede: Accelerating scientific discovery. Comput. Sci. Eng. 16, 62–74
(2014).

56. J. E. Jones, D. Sc, On the determination of molecular fields. –II. From the equation of
state of a gas. Proc. R. Soc. Lond. A 106, 463–477 (1924).

10 of 10 | PNAS
https://doi.org/10.1073/pnas.2017377118

VanSaders and Glotzer
Sculpting crystals one Burgers vector at a time: Toward colloidal lattice robot swarms

D
ow

nl
oa

de
d 

fr
om

 h
ttp

s:
//w

w
w

.p
na

s.
or

g 
by

 "
U

N
IV

E
R

SI
T

Y
 O

F 
C

H
IC

A
G

O
, T

H
E

 J
O

H
N

 C
R

E
R

A
R

 L
IB

R
A

R
Y

" 
on

 J
ul

y 
7,

 2
02

4 
fr

om
 I

P 
ad

dr
es

s 
20

5.
20

8.
12

1.
24

9.

https://www.pnas.org/lookup/suppl/doi:10.1073/pnas.2017377118/-/DCSupplemental
https://doi.org/10.1073/pnas.2017377118

