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Crystallography typically studies collections of point particles whose interaction forces are the gradient
of a potential. Lifting this assumption generically gives rise in the continuum limit to a form of elasticity
with additional moduli known as odd elasticity. We show that such odd elastic moduli modify the strain
induced by topological defects and their interactions, even reversing the stability of, otherwise, bound
dislocation pairs. Beyond continuum theory, isolated dislocations can self propel via microscopic work
cycles active at their cores that compete with conventional Peach-Koehler forces caused, for example, by an
ambient torque density. We perform molecular dynamics simulations isolating active plastic processes and
discuss their experimental relevance to solids composed of spinning particles, vortexlike objects, and
robotic metamaterials.
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Topological defects are local singularities in an order
parameter that have global consequences at large scales
[1–9]. In active systems, topological defects exhibit dis-
tinctive properties such as self-propulsion or nonreciprocal
interactions [10–31]. In the study of crystalline defects, it is
often assumed that a potential energy governs the inter-
actions between the constituent particles. This assumption,
however, need not hold in driven and active solids. For
example, Fig. 1(a) shows a nonconservative interaction
force—one in which the work done between any two
configurations depends on the path taken. Such micro-
scopic forces generically give rise in the continuum limit to
odd elasticity: additional moduli that break the major
symmetry of the elastic modulus tensor [32,33].
Experimental signatures of odd elasticity have been
reported in solids made of spinning embryos [34]
and colloids [30] with hydrodynamic interactions, and
robotic metamaterials [35,36]. Likewise, gyroscopic matter
[37–46] and vortexlike objects [47–55], e.g., skyrmions
[56–61], can exhibit a special case of odd elastic dynamics
[see Supplemental Material (SM) [62] ].
Crystallography without potentials.—A typical starting

place in crystallography is a collection of point particles at
positions x ¼ ðx1;x2;…;xNÞ interacting via forces that are
the gradient of a potential

FαðxÞ ¼ −
∂VðxÞ
∂xα : ð1Þ

However, in general, Eq. (1) need not be valid.
Experimentally relevant [29–31,34,72–77] counterexamples
includepairwise forces of the formFαðxÞ¼P

β≠αFðxα−xβÞ
where FðrÞ depends only on particle separation

FðrÞ ¼ FkðrÞr̂ − F⊥ðrÞϕ̂: ð2Þ

Here, r is the relative coordinate between two interacting
particles, ϕ̂ ¼ −ϵ · r̂, and ϵ is the antisymmetric tensor.
Henceforth, we will focus on first order dynamics
_xα ¼ Fα, which arise in overdamped media, as well as in
vortex [47–55] and gyroscopic [37–46] crystals in which the
forces Fα ¼ ϵ · ð∂V=∂xαÞ are transverse to potential gra-
dients, see SM [62], Sec. S1 A. Subject to first order
dynamics, the quantity P≡ _xα · FαðxÞ is greater than zero
for trajectories satisfying the equations of motion [78].
Of particular interest here are interparticle forces such that
WC ¼

H
C Pdt ≠ 0 for closed contoursC [seeFig. 1(a)].Notice

that ∇ × F ¼ 0 is equivalent to requiring that WC ¼ 0 for
all contractible loops C. In Newtonian mechanics, WC

has the interpretation of energy, and ∇ × F ≠ 0 is equi-
valent to violating Maxwell-Betti reciprocity (MBR) [79],
which means that the linear response matrix between force
and displacement is no longer symmetric, see SM [62],
Sec. S1 A.
Continuum theory.—In the continuum, we describe the

state of the solid via a continuous displacement field uðrÞ,
and we assume that the coarse-grained forces may be
expressed as fj ¼ ∂iσij, where σij is the Cauchy stress
tensor (see Ref. [28] for a treatment of dislocations that lifts
this assumption). We expand the Cauchy stress tensor σij
in terms of the displacement gradient umn to obtain
σij ¼ σ0ij þ Cijmnumn. Here, Cijmn denotes the elastic
modulus tensor and σ0ij is the stress prior to deformation.
In 2D isotropic crystals, the linearized stress-strain relation-
ship is summarized by the pictorial equation [32]
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ð3Þ

See SM [62] Sec. S1 C for tensor notation. In Eq. (3), p0

and τ0 are mechanically interpreted in terms of the pressure
and torque density associated with σ0ij. The matrix in
Eq. (3) corresponds to Cijmn and has three diagonal
components, the bulk B, shear μ, and rotational Γ moduli,
and three off-diagonal moduli Λ, A, and Ko. The anti-
symmetric contributions to the matrix in Eq. (3) are what
we refer to as odd elastic moduli [32]. The counterpart of
P ¼ _xα · Fα in the continuum is P ¼ R

Sij _uijd2r, where Sij
is the first Piola-Kirchof tensor [80–84]. Writing
Sij ¼ S0ij þ C̃ijmnumn, we have

C̃ijmn ¼ Cijmn þ σ0ijδmn − σ0mjδin: ð4Þ

In the continuum, the Maxwell-Betti reciprocity theorem
states the internal forces must be nonconservative if
C̃ijmn ≠ C̃mnij [79]. Odd elasticity (Cijkl ≠ Cklij) coincides
with broken MBR (C̃ijkl ≠ C̃klij) when no ambient stress is
present (σ0ij ¼ 0). In terms of the moduli in Eq. (3), the

condition for MBR, C̃ijmn ¼ C̃mnij, reads

2Ko ¼ A − Λ ¼ 2τ0: ð5Þ

Notice from Eq. (5) that odd elasticity can arise even when
MBR holds (i.e., the microscopic forces are conservative)
provided that τ0 is nonvanishing. For instance, the trans-
verse microscopic force F⊥ðrÞ ∝ ð1=rÞ is curl free, i.e.,
conservative and, nonetheless, gives rise to A and Ko

(SM [62], Sec. S1 E). In this case, A andKo can be detected
from static stress-strain measurements, but the work they
generate during strain cycles must be cancelled by τ0. The
distinction between Cijkl and C̃ijkl vanishes when no
ambient stress σ0ij is present. See SM [62], Sec. S1 E for
how crystals with purely transverse interactions, such
as lattices of vortexlike objects [47–61], or gyroscopes
[37–46], can be mathematically cast as a special case of odd
elasticity with B ¼ μ ¼ 0.
Microscopics.—To relate the moduli to the microscopic

transverse forces, we linearize Eq. (2) about the lattice
spacing a: F⊥ðrÞ ¼ F⊥

0 − kaðr − aÞ. The resulting odd
elastic moduli for a hexagonal lattice read

A ≈
ffiffiffi
3

p

2

�
ka þ F⊥

0

a

�
; Ko ≈

ffiffiffi
3

p

4

�
ka −

3F⊥
0

a

�
; ð6Þ

along with an ambient torque density τ0 ¼
ffiffiffi
3

p
F⊥
0 =a, see

SM, Sec. S1 D and Refs. [28,32]. Additionally, the
modulus A arises whenever the full torque density
τ ¼ ϵijσij=2 couples to local dilation ∂iui ¼ −δρ=ρ0,
namely, A ¼ ðdτ=dρÞρ0. The forces in Eq. (2) depend only
on r and, therefore, cannot contribute to Γ and Λ which
couple to solid body rotations.However,Γ andΛ can arise in
response to external fields or interactions with a substrate
[8], see SM [62], Sec. S1 E for examples. Henceforth, we set
Λ ¼ Γ ¼ 0, see S.M. [62], Sec. S2 C for a general treatment.
Continuum solutions.—Topological defects are singular-

ities where uiðrÞ becomes multivalued, e.g., the dislocation
in Fig. 1(b) is defined by the Burgers vector bi

bj ¼
I
γ
∂iujdri: ð7Þ

where γ is a counterclockwise contour around the dis-
location. We solve ∂iσijðrÞ ¼ 0 together with Eq. (7) to
obtain static solutions of the dislocation displacement field
(SM [62], Sec. S2 C)

FIG. 1. Odd elasticity modifies dislocation interactions and
their stability. (a) A particle at point x1 exerts a force F on a
particle at point x2. This force is nonconservative, so nonzero
work is done along the closed cycle C. (b) A dislocation is defined
by a Burgers vector b that represents the offset from what would,
otherwise, be a closed loop γ. (c),(d) An orange dislocation is
held stationary while a second antialigned dislocation is free to
move along its glide plane subject to the Peach-Koehler force (red
arrows). When jA=Bj < 1, the free dislocation has two stable
points located along rays forming an angle π=4 with the glide
plane. The effective potential Veff as a function of the horizontal
(rx) and vertical (ry) distance between the dislocations. (e),(f)
When A=B > 1, the rightmost stable equilibrium moves outward
beyond π=4. (g),(h) When A=B ¼ ∞, only one stable equilibrium
position exists and the shaded region is an unstable basin.
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udisl ¼
1

2π

�
ϕbþ 1 − ν

2
logðrÞϵ · b −

1þ ν

2
ðr̂ · bÞϕ̂

− νo½logðrÞbþ ðϕ̂ · bÞϕ̂�
�
: ð8Þ

where r and ϕ are polar coordinates about the defect. The
elastic properties enter only through (i) a modified
Poisson’s ratio, ν, (SM [62], Sec. S2 C) and (ii) a purely
nonreciprocal odd ratio [32]

νo ¼ BKo − Aμ
μðBþ μÞ þ KoðAþ KoÞ : ð9Þ

The effect of νo in Eq. (8) is to globally rotate the local
shear axis by an angle δα

δα ¼ −
1

2
arctan

�
2νo

1þ ν

�
: ð10Þ

See SM [62], Figs. S5 and S6 for an illustration and
numerical validation. Sec. S2 B in the SM [62], provides
similar results for point defects and isolated disclinations,
which have recently been observed in experiments [34]
of spinning embryos interacting via transverse forces,
cf. Eq. (2).
Dislocation interactions.—The modified stress field

alters dislocation interactions. First, consider the work
done in quasistatically moving a test dislocation by δXi

through a preexisting stress field σðpreÞij obeying

∂iσ
ðpreÞ
ij ¼ 0. Regardless of the constitutive properties of

the material, the work done by σðpreÞij is given by the Peach-

Koehler (PK) formula δW ¼ fPKm δXm, where fPKm ¼
ϵmiσ

ðpreÞ
ij bj (SM [62], Sec. S3 A). The continuum interac-

tion between two dislocations is the PK force experienced
by the test dislocation as a result of the stress field
generated by the other. In Figs. 1(c)–1(h), we examine
the interaction between two antiparallel dislocations in the
presence of odd elastic moduli. The modulus A provides a
nontrivial modification

fPKðrxÞ ¼
ð1 − νÞb1b2

πr4
ðr2x − r2yÞðBrx þ AryÞ; ð11Þ

where fPK is the PK force projected onto the glide plane of
the dislocation. When A ¼ 0, the dislocations obey
the classic result: their separation vector forms an angle
π=4 with respect to their glide planes [2,85]. When
0 < A=B < 1, the mechanically stable positions remain
the same while their basins of attraction change. When
A=B > 1, the right equilibrium point moves out beyond the
π=4 angle. When A=B → ∞, the rightmost basin becomes
unstable. When the Burgers vectors are not parallel, the
dislocation interactions are nonreciprocal in the sense of

being nonmutual: their forces are not equal and opposite
(SM [62], Sec. S3 B).
Dislocation motion from PK forces.—While the con-

tinuum theory provides insights at long length scales,
whether and in what directions dislocations actually move
depends on microscopic details. To illustrate this, we
perform overdamped molecular dynamics simulations of
particles interacting with a radial force FkðrÞ given by a
Lennard-Jones (LJ) force and three different realizations of
the transverse force F⊥ðrÞ in Eq. (2), see Figs. 2(a) and 2(b)
and Movie S1 in the SM [62].
First, consider a transverse interaction F⊥

LJðrÞ, which like
Fk, is an LJ force: a dislocation introduced to the center
remains stationary as in a passive crystal. The reason is that
the total force on any particle is simply a rotation of the
force due to Fk. Hence, the static configuration guaranteed
by energy minimization for Fk remains static when F⊥

LJ is
introduced. Next, we introduce F⊥

Lub, which is a mono-
tonically decreasing function of a single sign shown in
Fig. 2(a), generically representative of hydrodynamic,
lubrication, and frictional forces between self-spinning
particles [29,34,72,76,77]. For F⊥

Lub, the dislocation travels
at a near constant speed to the left. Since F⊥

Lub is nonzero at
the first neighbor shell, it produces an ambient torque

density τ0. Upon setting σðpreÞij ¼ τ0ϵij, the direction of
dislocation motion follows the standard PK force expres-

sion fPKi ¼ ϵijσ
ðpreÞ
jk bk ¼ −τ0bi, in agreement with the

experiments and analysis of spinning-colloid crystals in
Refs. [28,30].
Dislocation self-propulsion from microscopic work

cycles at their cores.—Now, we show that not all mech-
anisms of dislocation propulsion can be captured by
continuum considerations. The continuum PK force is
derived from a coarse-grained approximation to the work
done during dislocation motion. However, when a potential
is not well defined, contributions to δW from short length
scales need not average out during dislocation motion. In
some cases, they can even overcome continuum predic-
tions. To illustrate this, we use, as a probe, the force F⊥

δ ðrÞ
narrowly peaked at a tunable interparticle distance r ¼ δ
and with the same sign as F⊥

Lub. However, when the peak δ
lies half way between the first and second neighbor shells,
the dislocation now travels to the right, the opposite
direction of F⊥

Lub [see Figs. 2(a) and 2(b)]. Since the force
F⊥
δ is negligible at the first and second neighbor shells, the

odd moduli A and Ko, as well as the ambient torque density
τ0, are vanishingly small. This suggests that the underlying
mechanism of dislocation motility evades the standard
continuum explanation in terms of PK forces provided
in the previous paragraph.
As we now show, this dislocation motility is a form of

self-propulsion associated with microscopic work cycles
acting at dislocation cores. First, we highlight all the bonds
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that straddle the glide plane [Fig. 2(c)] and align their bases
so that they are viewed in the space of their relative
coordinates ðrx; ryÞ [Fig. 2(d)]. Crucially, as the dislocation
moves by a single unit cell, each highlighted bond assumes
the position of its neighbor to the right. Next, we concat-
enate all the individual bond trajectories into a single
contour C (dashed line) that begins at rx ¼ −∞ and ends at
rx ¼ ∞. The total work done when each of the bonds

moves a short distance is then equivalent to that of a single
bond traveling the entire contour, cf. Fig. 1(a). Notice that,
if the force falls off faster than 1=r, then the contour may be
closed in the upper half plane. Similar to the single-bond
cycle shown in Fig. 1(a), the corresponding work Wglide

reads

Wglide ≈
I
C
F · dr ¼

Z
A
∇ × F d2r; ð12Þ

where A is the upper half plane enclosed by C (SM [62],
Sec. S4 and Movie S2).
SinceWglide is associated with motion through one lattice

spacing, the corresponding force on the dislocation reads
fcore ¼ ð1=aÞWglide, and it is directed along the glide plane.
In principle, the detailed shape of C depends on protocol
and dynamics. However, a useful first approximation is to
take C to be the line at ry ¼ ð ffiffiffi

3
p

=2Þa, giving

fcore ¼ 1

a
Wglide ≈

1

a

Z
∞

−∞
F⊥
x drx

����
ry¼

ffiffi
3

p
2
a
: ð13Þ

In Fig. 2(e), we perform simulations with F⊥
δ , but we vary

the parameter δ, which sets the location of the central peak.
At small δ, there is significant overlap between F⊥

δ and the
first neighbor shell, giving rise to a large ambient torque
density τ0 ≈

ffiffiffi
3

p
F⊥ðaÞ=a and the corresponding PK force

fPK. Figure 2(f) shows the relative magnitudes of fcore and
fPK as a function of δ. The crossover in dominant force
coincides with the sign reversal in dislocation speed
corroborating our theoretical derivation of fcore. While
the sign reversal is a dramatic effect that occurs under
specific conditions, fcore is generically present for all
nonconservative microscopic interaction forces. Solids
whose microscopic interactions violate Newton’s third
law can also display spontaneous dislocation motion [28].
Active plasticity.—Finally, we examine the effects of odd

elasticity on plastic deformation. In Fig. 3(a), we perform a
simple uniaxial compression of a solid interacting via a
transverse lubrication force (see, also, SM [62], Movies S3
and S4). Before the first dislocation nucleates, odd elas-
ticity biases the stress distribution [Figs. 3(a) and 3(d)]. At
the end of the compression, the permanently deformed
shape of the beam breaks all mirror symmetries [Figs. 3(b)
and 3(e)]. The change in final shape arises because the
biased stress distribution favors dislocation nucleation from
the upper-right- and lower-left-hand corners [Figs. 3(c) and
3(f)]. Empirically, we find that introducing transverse
forces generally lowers the plastic yield strain at which
the first dislocation nucleates [Fig. 3(g)]. In Fig. 3(h),
we consider a single dislocation in the center of a disk.
In a passive medium, a uniform compression induces an
isotropic stress −Bðδρ=ρÞδij with an associated fPKi ¼
−Bðδρ=ρÞϵijbj in the climb direction. This typically results

FIG. 2. Dislocations self propel via active work cycles at their
cores. (a) Three transverse interactions F⊥

LJ (purple), F
⊥
Lub (teal),

and F⊥
δ (orange), with the neighbor shells highlighted by grey

lines. Inset: A hexagonal lattice with first and second neighbor
shells highlighted. (b) Particles are arranged in a free floating
circular cluster with a single dislocation located at the center, and
the dislocation position is tracked as a function of time.
Simulations are performed with clusters of radius R ¼ 50
(dashed) and R ¼ 100 (solid). See Supplemental Material
(SM) [62], Movie S1. (c) Bonds crossing the glide plane of a
dislocation are highlighted. Hue indicates the position of the bond
in real space (blue: left, red: right). Opacity indicates the length of
the bond (nearest neighbors darkest). (d) The highlighted bonds
are plotted with their bases aligned. As the dislocation moves one
unit cell to the right, the tops of the bonds trace out a contour C
(black dashed). The gray arrows depict the interaction force field.
See SM [62], Movie S2. (e) The interaction F⊥

δ is varied by
changing the location δ of its peak (pink: smaller δ, green: larger
δ). For each value of δ, the position of the dislocation is tracked as
a function of time. (f) The magnitude of the Peach-Koehler force
fPK and the active core force fcore as a function of the peak
position δ. The vertical lines represent the values of δ used in the
simulation. The direction change of the dislocation motion
coincides with the crossover between fcore and fPK.
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in no motion or defect splitting. The odd elastic solid in
Fig. 3(h) features a F⊥

LJ which induces no dislocation
motion in the absence of external stresses [recall Fig. 2(b)].
However, due to the odd modulus A, an area change gives
rise to a torque density τ ¼ Aðδρ=ρÞ, which, in turn,
promotes motion along the glide plane via fPKi ¼ −τbi.
To summarize, we studied how defect strains, inter-

actions, and motility are modified in systems for which the
interactions are more general than standard pairwise,
potential forces.
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