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Many biomolecular systems can be viewed as ratchets that rectify environmental noise through
measurements and information processing. As miniaturized robots cross the scale of unicellular or-
ganisms, on-board sensing and feedback open new possibilities for propulsion strategies that exploit
fluctuations rather than fight them. Here, we study extended media in which many constituents
display a feedback control loop between measurement of their microstates and the capability to bias
their noise-induced transitions. We dub such many body systems informational active matter and
show how information theoretic arguments and kinetic theory derivations yield their macroscopic
properties starting from microscopic agent strategies. These include the ability to self-propel with-
out applying work and to print patterns whose resolution improves as noise increases. We support
our analytical results with extensive simulations of a fluid of ‘thinker’ type particles that can selec-
tively change their diameters to bias scattering transitions. This minimal model can be regarded
as a non-equilibrium analogue of entropic elasticity that exemplifies the key property of this class
of systems: self-propulsive forces grow ever stronger as environmental noise increases thanks to
measurements and control actions undertaken by the microscopic constituents. We envision appli-
cations of our ideas ranging from noise induced patterning performed by collections of microrobots
to reinforcement learning aided identification of migration strategies for collections of organisms
that exploit turbulent flows or fluctuating chemotactic fields.

The processes of life are informational in nature [1]. In
its simplest incarnation a biological organism is endowed
with two key capabilities: a receptive one that senses
the environment the organism interacts with, and an ac-
tive one used to affect control over, or motion through,
that environment. Crucially, feedback between receptiv-
ity and action is needed, which entails information pro-
cessing capabilities. At submicron scales where thermal
fluctuations dominate, biomolecular machines central to
transmembrane transport [2], chemical sensing [3–5], and
transcription [6, 7] resort to memory-like structures to
rectify noise into motion. Even at macro scales, organ-
isms make decisions to harness fluctuating food sources
[8] or migration conditions [9, 10]. Moreover, as micro-
robots shrink, the need grows for exploiting (rather than
fighting) environmental noise through on-board sensing
and feedback control [11–14].

An idealized example of such noise rectification is the
‘information ratchet’ shown in Fig. 1a. Subject to the
outcome of measurements of the random forces on the
ratchet, a frictionless pawl is selectively inserted to block
counterclockwise transitions. Such a feedback protocol
can favor clockwise motion without the need of perform-
ing any work on the ratchet (aside from memory era-
sure, as in the Maxwell demon paradox [15–21]), because
thermal fluctuations are supplying the forces. Complex
biomolecular machines, such as the protein RNA poly-
merase [22] shown in Fig. 1b can be modelled as infor-
mation ratchets [23–28]. As it moves along a DNA tem-
plate, the polymerase builds an RNA strand from the
template by biasing the random addition of bases, ulti-
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mately growing the strand only in the direction of the cor-
rect sequence (i.e. down the template). This way of nav-
igating a noisy environment contrasts with the method
typically used by synthetic swimmers or active colloids
powered by catalytic reactions, that directly push against
environmental noise with rocket-like propulsion [29–41].
Crucially, such ‘worker’-type particles must dissipate en-
ergy fighting noise, while informational ratcheting agents
turn noise into a useful motive force whose amplitude
grows as environmental fluctuations increase. Informa-
tion ratchets are therefore reminiscent of entropic springs
that get stiffer as thermal fluctuations increase. However,
entropic elasticity is an equilibrium phenomenon: stiff-
ness increases with the number of available microstates,
as the temperature is raised [42]. What sets information
ratchets apart from entropic springs is their ability to
break detailed balance, as they bias transitions among
microstates.

Information ratchets have long been studied mostly as
individual objects, notably in the context of molecular
motors [26, 43–48]. Here, we focus on extended me-
dia where many constituent particles interact with each
other using their information ratcheting capabilities and
control actions [49]. More explicitly, these ‘thinker-type’
agents can execute the following actions:

i. measure their respective microstates,

ii. bias noise-driven transitions between microstates,

iii. establish a feedback loop between (i) and (ii),

iv. operate with finite resources, e.g. the mechanical work
W agents can exert during (i-iii) must be less than ε.

We dub such many body systems informational ac-
tive matter and derive their phenomenological properties
from microscopic control actions using kinetic theory and
information theoretic arguments.
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FIG. 1. Information ratchets in biology and active matter. a Schematic representation of an information ratchet
process. After measuring the fluctuating forces on the ratchet, a pawl is selectively inserted (withdrawn) to block (allow)
counterclockwise (clockwise) rotations. With sufficient finesse, inserting the pawl requires negligible work; this engine converts
noise and information to biased rotation. b The action of an RNA polymerase protein, viewed as an information ratchet that
converts noise and information into correct RNA sequences. This protein builds an RNA strand (blue) from a DNA template
(brown). Bases are added to the growing strand stochastically. When an incorrect base is randomly added, a ‘backtracking’
procedure is triggered that reverses the motion of the protein and ejects the incorrect base. c The thinker gas model of a
material built from information ratchets. Agents are particles that measure their position, velocity, and the presence of nearby
particles. This information is used to selectively avoid or enhance collisions by changing particle diameters. This distributed
engine converts noise and information into coordinated many-body motion, as explored below.

The thinker fluid. We illustrate this general ap-
proach using a minimal model: a fluid comprised of
‘thinker’ particles (Fig. 1c). Each thinker particle is a
freely moving hard disk within a gas agitated by noise.
Thinkers are able to measure their location, velocity,
and the presence of nearby particles (property i). They
can also selectively change their diameter, influencing
the likelihood of collision with other particles (prop-
erty ii). Crucially, diameter changes are made accord-
ing to the outcome of measurements, creating a feed-
back loop (property iii). The choice of a diameter change
as the controlled property, rather than a change in self-
propulsive force or direction is not accidental. It is one
of simplest ways to directly change how agents interact
(during collisions) which allows us to focus on the emer-
gence of simple forms of collective (or social) behavior. If
the diameter change is restricted to periods between col-
lisions, then thinkers need only exert a negligible amount
of work (ε) to control their scattering transitions (prop-
erty iv). As ε → 0 this system can be viewed as a fluid

of Maxwell demons (i.e. microscopic controllers) that re-
distribute particle density over volumes of phase space
by biasing scattering events throughout the system in
order to extract work. This minimal model generalizes
single-demon devices such as the Szilard engine and pro-
vides glimpses in the emergent behavior of more realis-
tic ensembles of informational ratchets, while remaining
mathematically tractable.

An example of a simple diameter change rule is shown
in Fig. 2a, where agents adopt a small diameter (Ds)
when traveling right, and a large diameter (Dl) when
traveling left. Obeying the bound set by ε = 0 re-
quires prohibiting diameter expansions that cause over-
laps (Fig. 2b, dashed outline). Coupling velocity to di-
ameter changes as in Fig. 2a generically breaks detailed
balance, which can be seen by comparing a forward and
reverse collision process (Fig. 2c-d). After a collision
modifies an agent’s velocity (~v → ~v′) a ‘reverse’ col-
lision beginning from velocity −~v′ will not recover the
initial configuration if a diameter change has also oc-
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FIG. 2. The thinker gas biases collisions to produce flows. a A simple discrete diameter rule for a thinker particle.
Thinkers traveling right (left) adopt small (large) diameters. b Collision of a thinker with diameter rule a and an immobile
object (blue disk). Diameter changes are prohibited when overlaps would occur (dashed outline). c A forward collision between
a thinker with diameter rule a and an immobile obstacle (blue disk). Thinker velocity is transformed from ~v to ~v′. d The
reverse process to c. Because of the diameter change, the collision starting from thinker velocity −~v′ does not return to −~v,
indicating broken detailed balance. e Velocity distribution function of a 2D isothermal simulation of thinkers (with diameter
rule shown in a) immersed in a passive hard-disk gas. Thinkers are concentrated in the positive half of the velocity plane, as
predicted by a kinetic theory developed below. f Mean bulk velocity ux of thinkers in e as a function of temperature, with
fixed ∆D = 1. Mean bulk flow due to collisional biasing is a fraction α of the thermal speed, where α is not a function of
temperature. g Ratio of mean bulk velocity to thermal speed as a function of diameter change for thinkers in e. h Positional
distribution function in x for a 2D isothermal simulation of thinkers that choose a small (large) diameter when moving towards
(away) from a fixed reference point (indicated by a star at the origin), immersed in a passive gas. Thinkers are concentrated
near the target location. i Depth of an effective potential consistent with the increased density of thinkers near the target in
h, as a function of temperature. Effective potential depth is ωkbT , where ω is not a function of temperature. j Ratio of the
effective potential depth and temperature for thinkers in h as a function of initial total density ρ0

curred. We demonstrate the consequences of this broken
collision microreversibility through a molecular dynamics
(MD) implementation of the thinker gas (in the package
HOOMD-Blue v2.9.3 [50], see methods).

Active driving from local measurements. Fig-
ure 2e shows the results of a simulation of thinkers
held at constant temperature, with the diameter cou-
pling shown in Fig. 2a and immersed in a fixed-diameter
gas. The resulting velocity probability distribution is
not Gaussian: thinker velocities are concentrated along
the positive-x direction, as they are more likely to en-
ter regions of phase space with smaller scattering cross-
sections. This departure from the Maxwell-Boltzmann
(MB) distribution occurs despite energy and momentum
conservation (to algorithmic precision) in the molecular
dynamics simulation (see SI Figure S1), and while un-

dergoing collisions with a passive, MB-distributed gas.
Such asymmetric distributions have non-zero mean ve-
locity, as revealed by computing the first moment, ux =∫
vxP (vx)d~v, as shown in Fig. 2f. This mean velocity

is ux = α
√

2kbT/m, a fraction (α < 1) of the ther-
mal speed for particles of mass m at temperature T .
The quantity α is a temperature-independent function
of the change of thinker diameter (∆D = Dl − Ds,
Fig. 2g). The shape of the velocity distribution, mean
velocity, and temperature-independent driving strength
α obtained from microscopic simulations (red data in
Fig. 2e-g) can all be predicted to high accuracy using
a kinetic theory of the thinker gas (black curves), which
we will describe in detail later.

A more complex diameter rule is shown in Fig. 2h,
where agents have diameters coupled to both velocity
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FIG. 3. The thinker gas as entropic active matter.
a Work done to propel a thinker through a passive gas
per measurement cycle (duration ∆t). Power dissipated in
thinker propulsion is estimated from simulation by finding
the density-dependent drift velocity ~u and mobility coefficient
µv. The black curve is the average free energy dissipated
in deleting the thinker’s memory of prior measurements, ob-
tained from a Markov chain model of the thinker measure-
ment process (see methods and extended Fig. E1), where σ
is the intrinsic efficiency of rectification by collisional bias-
ing and η is a fitted constant of order one. b Conceptual
categories of mechanical media. Spring networks at low tem-
perature are equilibrium (i.e. passive) media with properties
dominated by internal energy (upper left). Rubber-like ma-
terials at finite temperature are also in equilibrium, but have
a mechanical response dominated by the entropy of avail-
able chain conformations (lower left). Non-equilibrium, or
active, media driven by mechanical work include Janus par-
ticles, submicron rocket-like devices that consume a chemical
fuel (upper right). Thinker particles complete the table as a
non-equilibrium material with properties controlled by mea-
surement and feedback; essentially entropic processes (lower
right).

and position - when moving towards (away from) a fixed
reference point, a small (large) diameter is chosen. In-
tuitively, an initially homogeneous spatial distribution of
agents densifies near the reference point. When viewed
without knowledge of the diameter change process, one
might think that this isothermal thinker gas is in a

potential well centered on the reference point. A po-
tential consistent with this observation can be found
by computing the potential of mean force defined as
Upmf (~x) = −kbT lnρ(~x)/ρ0, which assumes that the like-
lihood of observing a density configuration ρ(~x) is Boltz-
mann distributed according to a free energy Upmf (~x)
[51]. The depth ∆Upmf of this effective potential scales
linearly with temperature (Fig. 2i), indicating that the
high density of thinkers near the target location is in
fact independent of temperature, unlike the case for an
externally applied energetic potential, where increased
temperature allows particles to escape confinement. The
logarithm of the relative density of thinkers near the tar-
get, ω = ln ρ(~xmax)/ρ(~xtarg), shown in Fig. 2j, increases
with increasing initial total gas density ρ0.

Information-theoretic arguments. Recall that a
Szilard engine can lift an external load as long as infor-
mation is not erased from the memory of the controller
(i.e. demon) needed to operate it [19]. Similarly, thinker
particles can extract the work needed to propel them-
selves through a surrounding gas with speed u from the
gas itself, solely by performing measurements and con-
trol actions. The work needed is W = u2∆t/µv where
µv is the particle mobility and ∆t is the time between
measurements. According to Landauer’s principle, the
amount of work extracted is bounded by

W ≤ kbTI, (1)

the energy needed to erase the information I collected
during such measurements [17, 19, 52–55]. we shall as-
sume for simplicity that the thinkers are not allowed to
do any mechanical work W to expand, i.e. ε = 0.

We first provide a qualitative argument for the depen-
dence of W on density. Information is encoded in the
binary diameter state of the thinker particle. At low
density, negligible information (and hence W) is gained
because collisions are so rare that thinker velocity (and
hence diameter) is nearly constant. Collision frequency
(and also information acquired) increases with ρ, up un-
til a characteristic density ρ∗ ∼ 1/A(∆D), where A(∆D)
is the area of the annulus defined by the excluded area
change of a thinker whose diameter expands by ∆D.
Crucially, expansion of a thinker reduces the phase-space
volume available to the surrounding gas by the amount
A(∆D). Above ρ∗, thinkers are nearly always crowded
by other particles and hence forbidden from changing
their diameter. Assuming that particles are distributed
over space uniformly, we can use a Poisson distribution
to estimate the probability of a successful expansion as
e−ρ/ρ

∗
. Information and work are therefore exponentially

suppressed in the large ρ limit.

To estimate the average information gained by mea-
surement, I (and hence the maximum W in Eq. 1), we
construct a two-state Markov chain model for the bi-
nary diameter change process (see methods and extended
Fig. E1). The mean information (or entropy, for error-
free measurements) of a Markov chain at steady state per
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FIG. 4. Observable consequences of thinker measurements. Kinetic theory of the thinker gas reveals collective
properties. i Diameter in the velocity plane, ii deviation from the Maxwell-Boltzmann (MB) distribution, iii distribution
entropy (S =

∫
ft ln ftd~v) relative to the MB distribution, iv pressure (Pij = ρm

∫
vivjftd~v) relative to the MB distribution,

and v heat flux (qi = (ρm/2)
∫
vi|~v|2ftd~v) for a a radially symmetric Gaussian diameter function, b an anisotropic quadratic

function, and c a step function. d A thinker gas with an anisotropic diameter function in a flexible container. Diameter
function anisotropy produces an anisotropic pressure tensor, deforming an initially circular passive container into an ellipse.
e Comparison of worker and thinker type propulsion, by analogy to rockets. In the case of a Janus particle (top), heat from
burning a fuel is directed backwards, into expanding exhaust which does work on its environment; a propulsive force results as
for a macroscopic rocket. Consider a ‘thinker’ rocket (bottom) in which the expansion of exhaust behind is paired always with
a contraction ahead, exactly canceling the work of expansion. This would however require the flow of heat from front to back
(and cold to hot), necessitating entropy production.

step is [53, 55, 56]:

I = −
∑

ij

µiPij ln Pij . (2)

where Pij are the transition probabilities between dis-
crete states occupied with probability µi. Note that this
entropy is distinct from the entropy production rate of-
ten discussed in the stochastic thermodynamics of active
systems [57, 58], which is zero because there are only
two states corresponding to the binary diameter choices
of a thinker particle moving through a passive isothermal
gas. These diameter states encode the outcome of local
measurements. Combining Eqs. 1 and 2 we obtain an

estimate of the maximum work extracted W ≈ ησkbTI,
where σ is a rectification efficiency for hard disk collisions
(see methods) and η is a fitting parameter of order one.
Our estimate for W, plotted in Fig. 3a (black curve),
qualitatively captures the trend observed in MD simula-
tions (red symbols), as well as our intuitive argument for
the dependence of W on ρ.

The thinker-gas example underscores the general point
made in the introduction, namely that informational ac-
tive matter is in a distinct category from energy-driven
active matter (e.g. autophoretic colloids [34]), because
it derives its activity by harnessing information (i.e. en-
tropy) and noise. With its ability to break detailed bal-
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ance, it is a non-equilibrium counterpart to entropic pas-
sive matter [42, 59] such as rubber, which has mechani-
cal properties that also scale with noise. The thinker gas
(and the larger category it exemplifies), completes the
simple taxonomy of active/passive, energetic/entropic
systems (Fig. 3b).

Kinetic theory: compressible phase-space flows.
We now sketch how kinetic theory yields an accurate pre-
diction for the thinker self-propulsion speed, and more
generally collective properties of informational active
matter, such as pressure or heat flux, starting from the
microscopic agent strategy. Consider the force-free and
spatially homogeneous Boltzmann equation,

∂f

∂t
= Q(f) (3)

where Q is the collision operator, which describes the
manner in which particle collisions redistribute probabil-
ity density in phase space, and f(~v, t) is a single parti-
cle velocity distribution function. The collision operator
here will be modified from its usual form to include the
feedback process in Fig. 1c, which measures particle ve-
locities (property i) and promotes or suppresses scatter-
ing transitions (property ii) in a feedback loop (property
iii), all subject to a work bound (property iv). Scattering
events are modeled using the quadratic collision operator
[60]:

Q =
1

2

∫ ∫
B(σ,∆~v)

[
βf(~v′)f(~v′∗)− f(~v)f(~v∗)

]
dσd~v∗

(4)
where ~v and ~v∗ are the velocities of particles undergoing
collision, and ~v′ and ~v′∗ are their post-collision veloci-
ties. The collision kernel B describes the scattering of
particles for a given impact parameter σ. Crucially, the
function β weights the post-collision joint probabilities
relative to the pre-collision ones and it is always equal
to one if detailed balance (i.e. microscopic reversibility)
holds. When β = 1, the steady-state solution of Eq. 3
is the Maxwell-Boltzmann (MB) velocity distribution for
fixed diameter particles. This is not the case in informa-
tional active matter (see Fig. 2e for an example), where
β is generically a function of measured microscopic prop-
erties of the system, e.g. velocities. The feedback control
strategies that bias the relative likelihood of transitions
between states introduce distortions of phase space repre-
sented by a β(~v,~v′, ~v∗, ~v′∗) 6= 1 term. Dissipation in gran-
ular media [61] or mechanical self-propulsion in flocking
media [62] can also introduce such compressible phase
space flows but for informational active matter β 6= 1
even if collisions still conserve energy and momentum
(i.e. ε = 0).

Diameter change strategy and phase-space dis-
tortion. For the thinker gas, the collision operator
should describe the evolution of a variable-diameter hard
disk gas. Therefore the collision kernel B takes on the
form for hard disk collisions (See S.I. section S4.2), while
β is a ratio of collision cross sections before and after the

collision. For situations in which thinkers predominantly
interact with a surrounding, fixed diameter gas (as in
Fig. 2), β can be shown to have the form (see methods):

β =
D(~v′) +Dfix

D(~v) +Dfix
(5)

where D is a function describing the diameter of thinkers
in velocity space, Dfix is the diameter of the passive
species, and the passive species has been arbitrarily as-
signed to starred velocity variables. For pure thinker
gasses (see SI), Dfix should be replaced with functions
of ~v∗ and ~v′∗. Using this form of the collision operator, a
single-particle distribution function ft can be found that
is the steady state solution for the variable-diameter gas.
This solution ft is a distribution that can be decomposed
as ft = (1 +D)fm, where D is a function of velocity and
fm is the MB distribution. In a dilute gas with β = 1,
the MB distribution is prescribed by quantities conserved
during particle collisions (i.e. particle number, momenta,
and kinetic energy). The same constraints apply to the
thinker gas by construction (as ε = 0), and therefore the
zeroth, first, and second order moments of its distribution
must be equal to their MB counterparts. This relation
defines a sufficient set of constraining equations to solve
for ft explicitly (see methods).

Kinetic theory and symmetries of the feedback
control strategy. Symmetries of the microscopic con-
stituents are crucial in determining material properties,
and informational active matter is no exception. In this
case, the symmetries of the feedback control strategy di-
rectly set which macroscopic properties of the active gas
depart from the passive MB distribution. We demon-
strate this using the thinker gas operating with several
strategies for D(~v) (Fig. 4a-c). Isotropic diameter func-
tions (Fig. 4ai) lower the gas entropy (Fig. 4aiii), but
have no consequences on gas pressure (Fig. 4aiv) or heat
flux (Fig. 4av). Anisotropic diameter functions with re-
flection symmetry impact the entropy of the distribution
and pressure, but not the heat flux (Fig. 4bi-bv). When
a thinker gas with an anisotropic microscopic feedback
strategy (and therefore an anisotropic pressure) is con-
fined within a flexible, initially-circular container, defor-
mation into an ellipse results (Fig. 4d).

Diameter functions that lack reflection symmetry mod-
ify entropy, pressure, and the heat flux vector ~q (Fig. 4ci-
cv). A non-zero heat flux is responsible for the striking
propulsive effects demonstrated in Fig. 2. The velocity
distribution of thinkers in Fig. 2e (as well as pure thinker
gases, see extended Fig. E2) can be accurately predicted
from our kinetic theory, including the mean propulsion
speed shown in Fig. 2g. Assuming that thinker bulk mo-
tion accounts for the entirety of energy flux in the system,
i.e. ~q/ρ+ kbT~u = 0, the self propulsion speed is

ui = − m

2kbT

∫
vi|~v|2ftd~v. (6)

For mechanically active systems, the propulsive conse-
quences of heat flux are familiar: Janus particles, much
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FIG. 5. Thinker self-propulsion strategies and reinforcement learning. a The RL learning cycle. Actions are chosen
according to a policy function, and experiences of transitions are accumulated in a buffer. This buffer is used to train a
feed-forward artificial neural network that defines the policy function. b Locomotion task definition and legend. Agents are
embedded in a periodic environment with a singly-peaked (indicated by star) reward function. Agent density after learning
is shown in red. The RL algorithm searches for a probabilistic discrete diameter function of ~v, ~x that most rapidly moves
agents towards the maximum. Plots in c-f follow the same color scheme. c-f RL diameter functions under various transport
physics. c Isothermal environment. d Vibrated granular bed environment. e Isothermal dynamics with applied magnetic field.
f Langevin dynamics with applied shear field. In all cases, the vector field found by odd moments over the learned diameter

distribution (~ξ) points along the shortest-time path towards the reward maximum (white arrows).

like rockets, move by transferring heat backwards to their
expanding exhaust products (Fig. 4e, top). However for
informational active matter, exemplified by the thinker
gas, no analog of the combustible fuel is present. Heat
is taken from the surrounding medium instead and di-
rected backwards using on-board information processing
(Fig. 4e, bottom).

Reinforcement learning: self-propulsion strate-
gies for non-thermal noisy environments. Our ki-
netic theory applies in the dilute, spatially homogeneous
regime when the noise is thermal. But how can we pro-
ceed at high densities or in more general chaotic environ-
ments such as turbulent or non-thermally driven fluids?
Reinforcement learning (RL), a trial-and-error process
whereby agents learn to maximize rewards supplied by
an environment (Fig. 5a) [63–69], provides an agnostic
method to search for transition-bias strategies in regimes
beyond the reach of our kinetic theory. Again, we em-
ploy the thinker gas as our test system of choice, and seek
to agnostically learn a diameter (i.e. transition-biasing)
strategy D(~x,~v). Standard techniques from the field of
policy optimization [70] (see methods) are used to train
a single-particle probabilistic discrete diameter function
(PDl

= 1 − PDs
) of position and velocity that climbs a

singly-peaked ‘reward’ function in the shortest possible
time (Fig. 5b).

This locomotion task is solved by self-propulsion along

the least-time path from anywhere in the simulated do-
main to the most-rewarded point. Thinker agents may
experience various fluctuating forces, but ultimately only
those that persist after long time averaging (i.e. external
forces) are important to the geometry of least-time paths.
We can reveal this from RL-learned diameter functions
by taking an odd moment over the probability of choos-
ing a large diameter, PDl

:

ξi(~x) = −
∫
viPDl

(~x,~v)d~v. (7)

where the biasing vector field ~ξ is the direction of greatest
reflection asymmetry for the learned diameter strategy,
which we expect from kinetic theory to be parallel to the
direction of greatest heat flux, and therefore also propul-
sion. Figure 5c-f illustrates how agents learn to navigate
four different mixtures of thinkers and passive agents: a
2D thermostat-coupled periodic domain, a 3D vertically
agitated (i.e. a granular bed) domain, a 2D thermal gas
with applied magnetic field, and a 2D dissipative gas with
applied shear field (See methods for numerical details).

The biasing vector field ~ξ (shown as white arrows) adopts
a simple geometry pointing towards the most-rewarded

point (i.e. ~ξ = −x̂ for targets at the origin), regardless of
the type of agitating noise (even when this noise is the re-
sult of non-conservative collisions, see extended Fig. E3).
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FIG. 6. Noise-driven active patterning. a A collection of variable-diameter particles are dropped into a hard-sided box.
As particles undergo elastic collisions, their velocities are reduced by a linear drag term and they settle onto the bottom of

the box. The two species (red and blue) have opposite ~ξ(~x) fields (inset), driving strong separation into a designed pattern. b
Patterns can also be formed in continuously vibrated beds. Here, Boltzmann’s classic equation is written frame-by-frame while
thinkers are agitated by a correlated noise source, approximating a vertical shaker table. c Worker (self-propelled) particles

that exert a constant force in the direction specified by ~ξ, constantly agitated as in b. As in a-b, red and blue particles

move in opposite directions on the same ~ξ field. As agitation is increased (kbTeff ), pattern resolution degrades, since particles
can only push with a fixed amount of force. Frames are instantaneous snapshots of simulations at the time and effective
temperature indicated by the position of the inset lower left corner. d Thinker particles following the diameter rule of eq. 8 and

the same ~ξ field and athermal agitation as c. The time required to obtain a given letter resolution decreases with increasing
agitation, demonstrating the temperature dependence of informational active driving. Black curves are t = sL/

√
2mkbTeff for

s = 0.15→ 2 where L is the size of the simulation domain.

The biasing field only changes in response to external
forces such as the magnetic field in Fig. 5e (which causes
~ξ to spiral about the target) or shear field in Fig. 5f. Also
notice that the learned probabilistic diameter functions
are well-approximated by the deterministic strategy:

D(~x,~v) = Ds + ∆DH
(
−~v · ~ξ(~x)

)
(8)

where H is the Heaviside step function. We now demon-

strate how to design a self-generated flow of thinkers
in any noisy environment, (even environments of other

thinker species) using a chosen biasing field ~ξ(~x) and eq. 8
as the feedback protocol.

Information landscapes and noise-driven active
patterning. When the transition-biasing strategy of in-
formational active agents is spatially dependent, it ef-
fectively creates an entropically-derived free-energy land-
scape. To illustrate this point, we design bias fields to
produce a pattern formed by two species of thinker par-
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ticles (in three dimensions) dropped from a hopper onto
a surface (Fig. 6a). Energy is dissipated via linear drag,
eventually resulting in a stationary layer. By choosing
the bias field for each species, complex patterns can be
formed from this apparently chaotic process. Note that
gravity and interactions with the smooth container walls
are the only potential energy fields acting on particles
- patterns arise entirely from the biasing of collisions.
Furthermore, the bias field can also be a function of

time, ~ξ(~x, t). Figure 6b shows thinkers continuously ag-
itated by correlated noise (approximating a shaker ta-
ble). Rather than following a fixed biasing field, thinkers
switch target configurations so as to write out Boltz-
mann’s entropy equation (See electronic S.I. for videos
of these processes). Note that unlike a similar pattern
formed by an externally applied potential, thinkers de-
fine their pattern by the bias field which is carried on
board the collective. Thinkers with the capacity to form
a single pattern need only be given a slightly different
instruction set to form any other pattern (or sequence of
patterns) with similar resolution.

Entropically-derived free-energy landscapes exhibit a
striking difference from their energetic counterparts:
their depth is controlled by the level of noise. We high-
light this phenomenon by contrasting pattern forma-
tion by self-propelled worker and thinker particles. Two
species of worker particles (red and blue) that exert a
constant-magnitude force driving them oppositely along
the direction of a bias field will phase separate (Fig. 6c),
producing an effect equivalent to an external potential
field. However as agitation (approximating a shaker ta-
ble, and resulting in a mean per particle kinetic energy of
kbTeff ) is increased, pattern resolution drops as worker
effort is overwhelmed by noise. In contrast, the infinite-
time resolution of thinker particles experiencing the same
agitation is not affected by the strength of the noise (see
Fig. 2e for the thermal case), as informational driving
grows with fluctuations. In fact, the finite-time resolu-
tion of these patterns is set by propulsion speed, which
for thinker particles increases with temperature (Fig. 2b).
For a finite time, increasing kbTeff actually increases the
resolution achieved by thinkers (Fig. 6d), completely at
odds with the trend for workers under the same condi-
tions. Notice also that when random fluctuating forces
are comparable to the magnitude of worker driving (as in
Fig. 6c), the long-distance transport speed for workers is
significantly slower than that for thinkers. Workers must
exert large forces to drive themselves rapidly through a
fluid, as collisions continually redistribute applied work
into random motion. Conversely, thinkers harness ran-
dom motion into a drift velocity that is on the order of
the mean thermal speed.

Informationally active agents can exploit chaotic, non-
steady environments to form complex patterns by redis-
tributing (through measurements) the flow of energy be-
tween their degrees of freedom. While we have empha-
sized the limiting case where informational driving dom-
inates, our results may shed light also on more realis-
tic situations where mechanical and informational active

processes coexist. For example, cells living in crowded
conditions must make decisions to change or maintain
their diameter, sometimes in response to external cues
[71–73]. Such actions have constrained metabolic costs
(property iv). In addition, they alter the mechanical
and chemical interaction cross section with their simi-
larly changing neighbors (properties i-iii). As miniatur-
ized robots cross the cellular length scale [14] they must
contend with omnipresent thermal fluctuations, and also
intense non-thermal fluctuating forces in some environ-
ments (e.g. the human circulatory system). Our work
offers an organizing principle to understand when and
how such small intelligent agents can exploit, rather than
fight, their noisy environment.

METHODS

Microscopic model implementation. Molecu-
lar Dynamics (MD) simulations of the thinker gas
were performed with the open-source software package
HOOMD-Blue (v2.9.3) [50]. The package was modified with
a custom updater that performed the following actions on
each thinker particle every fixed interval of timesteps:

1. Find neighbors (of any type, including passive par-
ticles in the environment) within a distance of
1.5 times the maximum interaction cutoff distance.
Find the minimum distance between the particle
center and the boundary of a neighbor particle
(rnmin = rij −Dj/2).

2. Evaluate a function D(~x,~v) which determined the
desired new diameter of the particle (Dnew)

3. Change particle diameter.

(a) Dnew > Dold and Dnew/2 > rnmin. Expansion
would cause particle overlap. The diameter
change is discarded.

(b) Dnew < Dold and Dold/2 > rnmin. This par-
ticle is currently interacting with a neighbor.
Reducing its diameter would cause a poten-
tial energy change. The diameter change is
discarded.

(c) Dold/2 < rnmin and Dnew/2 < rnmin. No over-
laps will be added or removed by the diameter
change, and it proceeds.

This sequence of steps is done in series for all thinker par-
ticles so as to avoid a race condition which would change
the value of rnmin. All particles interact through a shifted
Weeks-Chandler-Andersen potential (sWCA) [74], where
the origin is shifted so that the radius of the particle
is the potential’s zero isoenergy surface. This potential
(implemented in the function hoomd.md.pair.slj) takes
the form:

VsWCA(r) = 4ε

[(
σ

r −∆

)12

−
(

σ

r −∆

)6
]

+ ε
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for r < (rcut + ∆) and VsWCA = 0 otherwise, where
∆ = (Di + Dj)/2 and Di, Dj are the diameters of the
interacting pair. The radial shifting was chosen with
σ = 0.5 so that the minimum (located at σ21/6 in the un-
shifted case) is at a distance of D0 = 21/6. This sets the
value of rcut in the interaction potential to σ21/6. The
depth of the attractive well was set to ε = 1. Isother-
mal simulations in Fig. 2 were carried out with a velocity
Verlet integration and a Nosé-Hoover thermostat, as im-
plemented in HOOMD-blue. System thermal energy was
held at kbT/ε = 1, and particle mass was fixed at m = 1
(in simulation units). Constant-energy simulations con-
firmed that the diameter change protocol outlined above
does not contribute to internal energy drift of the ensem-
ble (see SI section S2) during numerical integration.

Simulations of thinker gases contained in flexible con-
tainers (Fig. 4e) were conducted using constant-energy
Verlet integration of the gas and Langevin integration
of the flexible container (kbT = 1, damping parameter
γ = 2). The container consisted of two close-packed lay-
ers of beads with diameter Dl, bonded to nearest neigh-
bors by harmonic springs of stiffness k = 100.

Thinker Markov model. The information gained
by a thinker particle immersed in a passive gas can be
estimated from a Markov chain model, as referenced in
Fig. 3a. The model is constructed by first considering
the diameter transitions that depend upon gas collisions
and crowding, shown schematically in extended Fig. E1a.
Thinkers undergo random collision with the passive sur-
rounding gas, with probability Pcoll, which then random-
izes their velocities into the forward or reverse velocity
half spaces with probabilities P+ and P−, respectively.
If a thinker’s velocity is such that a diameter expansion
is attempted, no nearby particles must obstruct the ex-
pansion. The probability that this requirement is met is
denoted by P<, i.e. if an overlap is created the work ex-
erted by the thinkers must be less than the value ε, which
can be set to zero if desired. The transition diagram
can be condensed into a binary model of the form shown
in Fig. E1b. We utilized several elementary kinetic ap-
proximations to define the terms P+, P−, Pcoll, and P<.
Velocities are assumed to be randomly re-distributed by
collisions on average, with P+ = P− = 1/2. We assume
a collision timescale for the gas:

τ icoll =
limfp
cth

=
1

ρ0σicoll
√

2kbT/m
(9)

where superscripts indicate different values for the large
and small diameter states, limfp is the mean free path for

a gas of density ρ0, σicoll is the collision cross section, and

cth =
√

2kbT/m is the thermal speed of this isothermal
gas. We take the likelihood of a collision having occurred
in the time between actions ∆t to be

P icoll = 1− e−∆t/τ i
coll . (10)

Assuming that particles are distributed over space uni-
formly, we can treat their occurrence within an area A

as obeying a Poisson distribution, P (n) = (ρA)n

n! e−ρA

where n is the number of particles observed and A is the
area of the annulus defined by the expanding diameter,
A = ((Dl +Ds)

2/4−D2
s)π. This yields:

P< = P (n = 0) = e−ρ0A. (11)

The stochastic matrix describing this measurement se-
quence is:

Pthinker =

[
1− 1

2P
s
collP<

1
2P

s
collP<

1
2P

l
coll 1− 1

2P
l
coll

]
, (12)

and the corresponding steady state population is

µthinker =
[

P l
coll

P l
coll+P

s
collP<

P s
collP<

P l
coll+P

s
collP<

]
. (13)

For error-free measurements, the information con-
tained in an ensemble of measurements is equal to the
Shannon entropy H. For a Markov chain in the steady
state, the mean entropy (and therefore information) per
step is given by [56]:

I(P) = H(P) = −
∑

ij

µiPij ln Pij . (14)

The Markov estimate of propulsive work W includes an
efficiency term:

σ =
τscoll − τ lcoll
τscoll + τ lcoll

=
∆D

∆D + 4D0
, (15)

which is the ratio of time moving forward over total time,
assuming P+ = P− = 1/2. For the data shown in Fig. 3a,
∆D is fixed and σ = 1/5, and the fitting parameter η =
5/13.

Propulsive work was estimated from numerical data by
finding the mobility constant from the self-diffusivity of
the gas (µv = Dself/kbT ) for the the given density and
temperature conditions. An effective force could then
be defined from the drift velocity of the thinker species,
~Feff = ~u/µv, and the work per action as ~u · ~Feff∆t.

Kinetic theory of variable diameter hard disks.
We can find the velocities after collision between a pair of
hard disks by conservation of momentum and energy. As-
suming uniform particle masses, momentum and kinetic
energy are conserved through the collision process:

~v + ~v∗ = ~v′ + ~v′∗ (16)

|~v|2 + |~v∗|2 = |~v′|2 + |~v′∗|2 (17)

If n̂ is a unit vector that points between disk centers
at the point of contact (note that n̂ therefore depends
upon diameter), then the post-collision velocities can be
written as (for disks of equal mass):
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~v′ = ~v − ((~v − ~v∗) · n̂)n̂ (18)

~v′∗ = ~v∗ + ((~v − ~v∗) · n̂)n̂ (19)

For disks of fixed diameter, this scattering process is mi-
croreversible; (~v,~v∗) maps to (~v′, ~v′∗) and (−~v′,−~v′∗) maps
to (−~v,−~v∗), resulting in a Jacobian for the change of
variables equal to −1 [75]. This one-to-one mapping al-
lows all four velocity terms to be collected under a com-
mon unit disk integration in the typical quadratic Boltz-
mann collision operator (see supplemental information
for additional details). When particle diameters are in-
stead functions of velocity, the microreversibility of the
collision process is broken, but can be restored with a
shift of relative positions. In a coordinate frame centered
on the point of contact for the forward collision, a shift in
position of β = (D(~v′)+D(~v′∗))/(D(~v)+D(~v∗)) along the
reflection plane of the forward collision, applied to one
particle during the reverse process restores the symme-
try of velocity mapping (see extended Fig. E4). Note that
when thinker particles are immersed in a fixed-diameter
gas, one set of diameters (starred or unstarred) is con-
stant.

We will now solve for the single particle probability dis-
tribution function (f(~v)) that satisfies the steady state
form of eq. 3 for the thinker gas collision operator by
examining the collision invariants of the gas. If we con-
sider a moment of the time-varying distribution function
f(~v, t) with a non-time-varying test function φ:

〈φ〉f =

∫
f(~v, t)φ(~v)d~v (20)

the time evolution of this quantity is:

d

dt
〈φ〉f =

∫
φ(~v)Q(f)(~v, t)d~v (21)

The function φ can be brought into the integrand of the
collision operator since it is not a function of time. As
we are now considering an expression integrating over
all ~v and ~v∗ (and by extension ~v′ and ~v′∗), the choice
of primed and starred variables is entirely arbitrary. A
typical procedure is to average over the exchange of ve-
locity variables [75], producing the following for the case
of β = 1:

1

8

∫ ∫ ∫
(φ+φ∗−φ′−φ′∗) (f ′f ′∗ − ff∗)B(σ,∆~v)d~v∗d~vdσ

(22)
where B is the collision kernel and σ the impact parame-
ter. If φ is a quantity that is conserved through the colli-
sion, then it remains unchanged and d

dt 〈φ〉f = 0. This de-
fines a summational collisional invariant for the system.
For the Boltzmann equation, summational invariants can
only be linear combinations of the microscopically con-
served quantities, M = 1, ~v, |~v|2, which are unchanged

during collision by construction [76]. Therefore there ex-

ist constants (a,~b, c) that define any summational colli-
sion invariant:

M(~v) = a+~b · ~v + c|~v|2 (23)

For the thinker gas with β 6= 1, the same procedure of
exchanging velocity variables allows a common term to
be collected, g = (Dfix +D(~v))φ for the mixed thinker-
passive case, or g = D(~v)φ more generally. This term
must satisfy the same condition g+g∗−g′−g′∗ = 0 for it to
remain unchanged by collisions (i.e. be an invariant). We
will now define a system of moment equations allowing
us to specify the constants that characterize the thinker
gas collisional invariant. Beginning with the MB velocity
distribution function in 2D:

fm(~v) =
mρ

2πkT
e−

m|~p|2
2kT (24)

where ~p = ~v−〈~v〉 = ~v−~u is the velocity of the gas in the
flow frame, we express the thinker gas distribution func-
tion as ft = (1 +D)fm, where D is a function of velocity
only. We can treat the function (1 + D) as a test func-
tion operating on the MB distribution, with collisional
invariant g = D(1 + D). The four constants a, bx, by, c
which define invariant g (and therefore D) can be found
by requiring that the first four conserved moments (M)
of the thinker gas velocity distribution are equal to the
first four moments of the equilibrium MB distribution:

∫
Mfmd~v =

∫
M(1 +D)fmd~v

0 =

∫
MDfmd~v (25)

which mathematically states that thinker gases conserve
number, momentum, and energy in all collisions, just as
the MB distribution. Note that this restriction does not
constrain the third-order moments which define the heat
flux tensor, or the individual entries of the pressure tensor
(derived from second-order moments).

Using the expression for the thinker gas collision in-
variant, g = D(1 +D), we can trivially reorder to obtain
(1 + D) = gD−1. As a scalar function which must be
greater than zero, division by D presents no problems
(see supplemental information section S4.6). Using this
expression for the thinker perturbation, and the notation
for expectation value 〈φ〉m =

∫
φfmd~v, we can write:

〈M〉m = 〈M(1 +D)〉m
= 〈MgD−1〉m
= a〈MD−1〉m + bx〈MvxD

−1〉m+

by〈MvyD
−1〉m + c〈M|~v|2D−1〉m (26)
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For each of the conserved moments (M = 1, vx, vy, |~v|2)
a new expression is found, allowing for the definition of
a full rank system of linear equations:

A ·G = B (27)

A =




〈 1
D 〉m 〈vxD 〉m 〈 vyD 〉m 〈 |~v|

2

D 〉m
. 〈v

2
x

D 〉m 〈 vxvyD 〉m 〈 vx|~v|
2

D 〉m
. . 〈 v

2
y

D 〉m 〈 vy|~v|
2

D 〉m
. . . 〈 |~v|

4

D 〉m




(28)

G =
[
a bx by c

]>
(29)

B =
[
ρ ρux ρuy ρ|~u|2/2 + ρkT

]>
(30)

where the matrix A is symmetric and redundant entries
are not shown. Using the solution of this system of equa-
tions the thinker gas velocity distribution can be written
as:

ft = fm(1 +D) = fmD
−1g = fmD

−1(A−1B) ·G (31)

For arbitrary diameter functions, the terms in the ma-
trix A and its inverse are most easily found by numeri-
cal methods. See the supplemental information for func-
tional forms of A matrices for selected diameter func-
tions.

Reinforcement learning implementation. Stan-
dard policy optimization algorithms [70, 77] were imple-
mented to allow thinker learning during MD simulations.
Particles were rewarded by their location within a simu-
lated domain, effectively specifying a minimum-time lo-
comotion task. Artificial feed-forward neural networks
were used to encode two functions, the actor and critic.
These functions are maps between a ‘state’ vector (in
this case S = [x, y, vx, vy]) and other quantities of inter-
est. The critic maps states to expected future rewards
(r):

C(St)→ E
[∫ ∞

τ

γt−τr rtdt

]
(32)

where γr < 1 is the discount factor that bounds predic-
tions to a finite time horizon. The actor simply maps
states to actions (P (St) → at). The critic network is
trained using the temporal difference (TD) target:

C(St)←− C(St) + α(rt + γrC(S(t+∆t))− C(St)) (33)

where α is the learning rate and ∆t is the time inter-
val between updates. Note that we must wait until time
t + ∆t to apply learning updates to functions evaluated
at time t. The TD target is saved for use as an advan-
tage estimator when training the actor network [78]. The
actor function is updated in batches using the target:

Pθ(St)←− Pθ(St) + α∇θln Pθ(St)At (34)

where θ are the parameters of the network and At is
the TD advantage estimator. To improve stability, the
actor’s evolution during a single update is clipped to a
neighborhood in action probability space [70]. In these
simulations, the thinker gas interacts with a bath of pas-
sive, fixed-diameter particles. At the shortest timescales
(tact = 1), the thinkers choose new diameters as a func-
tion of their experienced state S and actor network. At
a longer timescale (tlearn = 5), the parameters of the
actor and critic networks are updated. State transition
tuples are accumulated in a memory buffer, and the critic
and actor networks are trained by stochastic descent on
these samples. All particles contribute experience to the
same networks, and since the thinkers comprise only 10%
of simulations, the effect is equivalent to parallel simu-
lations of single thinkers in passive baths with pooled
network parameters (centralized learning, decentralized
actions). In all learning cases a simple feed-forward neu-
ral network architecture was used with 3 hidden layers
of size 10. Neurons utilized the swish activation function
[79].

A variety of simulation types were used as environ-
ments for learning. In the isothermal setting (Fig. 5c), a
velocity Verlet integrator with Nosé-Hoover thermostat
was used (temperature kbT = 1) in a two-dimensional
periodic simulation domain. In the vibrated granular
bed model (Fig. 5d), a modified Langevin integrator was
used in an xy-periodic simulation domain. Stochastic
forces consistent with the fluctuation-dissipation relation
(γ = 0.1, unity mean kinetic energy) were applied to par-
ticles, albeit with the z-component of these forces empha-
sized over in-plane components by a factor of 10. A floor
was simulated as a frictionless plane (normal n̂ = [0, 0, 1])
that interacted via a potential with particles:

Vwall(rn) = 4ε

[(
σ

rn

)12

−
(
σ

rn

)6
]

+ ε

for rn < rcut and Vwall = 0 otherwise, where ε = 1,
σ = 1, rcut = 21/6, and rn is the point-plane distance
rn = n̂ · ~x + ~x0 (plane normals are chosen so that rn is
always positive).

In the magnetic gas environment (Fig. 5e), isothermal
conditions were applied to a 2D gas in a periodic domain.
A Lorentz force with magnitude B = 0.5 was applied
to induce curved particle trajectories. Finally, in the
sheared gas environment (Fig. 5f) a body force Fy+ =
(0.1, 0) was applied to particles with y-position greater
than zero and Fy− = (−0.1, 0) otherwise. Sheared par-
ticles evolved under standard (isotropic) Langevin inte-
gration (γ = 0.1, kbT = 1) in a periodic 2D domain.

Simulations of odd gases utilized a transverse recipro-
cal force between particles of the form

FLub(r) = ε log

(
rcut
r −∆

)
(35)

for r < (rcut + ∆) and FLub = 0 otherwise, where
∆ = (Di + Dj)/2 and Di, Dj are the diameters of
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the interacting pair. Particles were integrated under
Langevin dynamics, with damping parameter γ = 0.1.
The strength of the transverse force was chosen to pro-
duce a gas with kbTeff = 1 in the steady state.

Pattern design in dropped and vibrated thinker
grains. Simulations of thinker grains falling from a hop-
per and forming patterns were carried out using Langevin
integration (kbT = 0). Particles were released from a
square aperture of size 10Dl at a height of 300/Ds. Par-
ticles accelerated under a vertical force of strength 10γ,
where γ = 0.01 is the Langevin damping parameter. Box
walls, floor, and hopper surfaces were simulated as fric-
tionless planes. Particles settled into a stationary layer
on the floor of the chamber after a simulated time of
tf = 1000.

Vibrated pattern simulations were conducted as de-
scribed for the vibrated granular bed model, with γ =
0.01, unity mean kinetic energy, and vertical stochastic
forces 10 times as strong as those in-plane. To sequen-
tially write out frames a new target configuration was
set for thinkers and evolution was simulated for tp = 450
time units. To prepare for the next frame, a ‘clearing’
run of duration tc = 150 was performed during which red
thinkers sought the box edge and cyan thinkers sought
the box center. This clearing procedure assisted in dis-

tributing red thinkers equally over the domain and avoid-
ing frame-to-frame correlations.

Thinker behavior rules were generated from an image
of the desired character. The image was binarized, skele-
tonized, and converted to a set of points corresponding
to bright pixels in the processed image. Thinkers decided
their preferred diameter state by calculating the deriva-

tive of a field of Gaussian potentials (~ξ) emitted by these

points (with width σ = Lbox/10
√

2). For red thinkers,

when ~v ·~ξ > 0, the small diameter state was adopted, and
the large diameter otherwise. The cyan thinker species

had the same rule, but flipped the sign of calculated ~ξ.
The ability of thinkers to form and maintain patterns
was principally a function of the ratio of their large and
small diameter states. See the SI for images of patterned
formed by other diameter ratios (section S7).

For comparison with worker particles, the same direc-
tor field was used, however instead of feeding into eq. 8,
a constant force of magnitude F = Ds/ε = 1 was ap-
plied to particles along it (for red particles), or anti-
parallel to it (for blue). Worker diameters were held con-
stant at the average of thinker large and small diameters,
Dw = (Ds +Dl)/2. All other simulation conditions were
identical to the thinker comparison.
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FIG. E1. Markov chain model of the thinker measurement process. a Transition diagram for thinkers with a
diameter rule as in fig. 2a. Thinkers select one of two diameters depending on their current velocity. Collisions occur in
the time between thinker actions (∆t) with probability P l

coll (for large particles or P s
coll for small) and randomize velocities

(scattering into negative or positive velocities with probabilities P− or P+ respectively). For hard disks, shrinking diameter
never requires the thinker to exert work on the surrounding gas (W = 0), but expansions are only possible if no other obstacles
(i.e. particles) are nearby (probability P<). b Condensed two-state Markov chain model transition diagram for the one-bit
measurement that thinkers collect to determine which diameter state to adopt. In the steady state, the measurement sequence
M = [mt,mt+∆t, . . . ] has a mean entropy per measurement, H(M).

FIG. E2. Comparison between kinetic theory of a pure thinker gas and a microscopic numerical model. A pure
gas of thinkers, following the simulation protocol and diameter rule of Fig. 2e-g and compared against theoretical predictions
supplied by a kinetic theory. a Difference between the thinker velocity distribution function and the MB distribution, as
obtained by kinetic theory and simulation. b Pressure in the x direction (∆Pxx/PMB = −∆Pyy/PMB). c Components of the
heat flux vector, ~q, normalized by the mean free path length lmfp and most probable speed cmp.
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FIG. E3. RL learning in active and odd gases. Thinker gas agents immersed in an non-thermal gas. The learned solution
is independent of the type of non-thermal agitation. a Thinkers learning a locomotion task (move to the location indicated
by the star) within a gas of mechanically active particles. Mechanically active particles have a fixed-magnitude force Fa = 5γ
pointing along their director, where γ is the value of Langevin damping and the rotational diffusion constant of the active
particles’ directors. b Thinkers in an odd gas. All particles experience an equal and opposite transverse force during collisions,
in addition to the usual hard core repulsion.

FIG. E4. The microreversibility of hard disk collisions with velocity-dependent diameters. Two particles of
diameter D(~v) = D and D(~v∗) = D∗ with velocities ~v and ~v∗ are shown as the collision of a point object (with velocity ~v∗ − ~v)
with a stationary disk of diameter D+D∗. a In the coordinate frame centered on the stationary disk, the forward (black) and
reverse (grey) collisions are not symmetric. b In the coordinate frame centered on the point of contact forward and reverse
collision processes are symmetric, provided that the stationary disk’s position is rescaled by a factor (D′+D′∗)/(D+D∗) c The
symmetry of the collision can also be preserved in the frame centered on the stationary disk by rescaling the impact parameter
of the incoming particle.
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S1. DEFINING INFORMATIONAL ACTIVITY

We are concerned here with active media, many-body systems comprised of ‘active’ subunits. Multiple definitions
of ‘activity’ can be found - here we will define an active subunit as one that has an internal process which biases
its microstate transition probabilities (away from detailed balance, i.e. equilibrium). We focus on the distinction
between two sub-classes of activity: ‘mechanical’ and ‘informational’ activity. Both varieties fulfil the transition
biasing definition posed above, however their methods (and dependence on environmental noise) differ. Mechanical
activity is familiar from many studies of self-propelled particles [1–13], and its key distinguishing feature is that
subunits bias transitions by changing the free energy of the microstate currently occupied by the subunit. An iconic
example is the active Janus particle, in which a local chemical reaction raises the free energy of the particle’s current
microstate in such a way that relaxation occurs by forward motion. Informational activity is the complementary
strategy - biasing transitions by changing the free energy of unoccupied microstates which may become occupied in
the future.

Many realistic active systems (particularly biological ones) will be driven by a mix of mechanical and informational
activity. In order for informational activity to be possible, three key elements must be present:

1. Noise. Forces outside the subunit’s control which act upon the d.o.f.s of interest are a requirement for infor-
mational activity. As only unoccupied microstates can be biased, informational activity does not directly drive
transitions. Instead, some other source of agitation must be present.

2. Ability to bias unoccupied microstates. Microstates other than the one currently occupied by the subunit
must be biased. Additionally, the applied bias must persist long enough for the subunit to interact with that
microstate. Consider an unoccupied microstate, and a subunit about to transition into it. If a bias is applied,
and immediately relaxes before the transition occurs, the bias has no effect and the microstate is now occupied.

3. Measurement and feedback. The capacity to measure the current microstate of the d.o.f.s of interest is
central to informational activity. Unoccupied microstates can only be identified by determining the current
subunit microstate. Furthermore, a feedback control loop must exist between the d.o.f.s of interest and the
biasing of unoccupied states. If these two processes are decorrelated then biasing becomes merely another
random process which is bound to obey detailed balance.

We now examine several key examples using these criteria.

S1.1. The Maxwell demon

In James Clerk Maxwell’s iconic paradox [14], a ‘demon’ operates a trapdoor between two containers full of gas.
By allowing only fast particles to cross from the left to right containers, and only slow to pass from right to left,
a temperature gradient between the containers is produced. This happens despite the demon carefully opening or
closing the trapdoor only when no gas particles are present at the junction between the containers. In this example,
noise (in the form of a thermalized gas) plays a key role (requirement 1). The trapdoor fulfils requirement 2 - states
where gas molecules occupy the doorway are not biased by closing the door. Rather, the door is closed preemptively
to avoid an incoming particle crossing the wrong way. Feedback between the state of incoming gas particles and the
state of the trapdoor fulfils requirement 3.

S1.2. Active Brownian particles

Active Brownian particles are self-propelled objects, usually smaller than a micron in size. In practice, they tend to
operate by catalyzing a chemical reaction on half their surface, expansion of the reactants pushes them along. Such
small objects exist at a scale where room temperature thermal fluctuations are important, satisfying requirement 1.
However requirements 2 and 3 are not satisfied - particles have no capacity to measure their current microstate or
modulate their chemically-derived force. Nor do they possess the capacity to bias unoccupied states (in the commonly
considered overdamped regime).

S1.3. Vicsek-like flockers

The flocking of birds can be represented with a toy model of ‘flying spins’ in which particles have a polar variable,
their heading, which interact similarly to magnetic dipoles [15]. Particles also typically have a fixed velocity magnitude
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(imagined to be the result of self-propulsion) which points along their heading. Alignment interactions tend to
draw nearby flockers into parallel trajectories. While flockers might be considered to ‘measure’ the heading of their
neighbors, the resulting heading changes are deterministic processes, in which fluctuations play no role. When present,
orientational noise is simply a disturbing influence that heading alignments fight against. Flocking models of this
type are typically not informational because flockers drive transitions in their heading by forces acting directly on
their current state. As such, their active properties are evident even in the absence of noise.

S1.4. RNA polymerase

The process of copying an RNA strand from template DNA is ubiquitous to cellular life, and is carried out by a
complex molecular machine known as the RNA polymerase (RNAP). High fidelity [16] is important, as transcription
errors could produce proteins that fail to fold, or are ineffective or harmful when folded. Like DNA polymerase,
both selectivity and proofreading is employed to achieve high fidelity. Selectivity mechanisms are thought to closely
resemble those employed by DNA [17, 18], while proofreading mechanisms are different. In RNAPs the active site
where new nucleotides bind can be modulated. During elongation, this site facilitates the addition of incoming bases
onto the growing RNA strand. For various reasons, RNAPs may undergo ‘pausing’ or ‘backtracking’, in which the
progress of elongation is interrupted [19, 20]. Such events have been associated with expression regulation as well as
error correction [21–23]. Single-molecule experiments on RNAPs have found evidence to support a ‘Brownian ratchet’
interpretation of the transcription process, whereby the polymerase moves down the template DNA stochastically and
is rectified by the selectivity and proofreading processes [24].

The scale and stochastic behavior of RNAPs fulfill requirement 1 (noisy operation). RNAPs can be interpreted as
biasing unoccupied states - specifically the states corresponding to incorrect base additions, which fulfils requirement 2.
The ability of RNA polymerase to proofread (and to be selective for the correct base) are a form of measurement, where
the conformation of the protein is changed according to an assessment of the template DNA strand or correct/incorrect
state of the most recently added RNA base. Selectivity is relative to the pattern of the template DNA, a feedback
process, fulfiling requirement 3.

S2. ENERGY CONSERVATION IN MOLECULAR DYNAMICS SIMULATIONS OF THINKERS

The thinker gas diameter changing protocol described in the main text methods is designed to avoid changing the
potential or kinetic energy of the system (i.e. exert no mechanical work). As proof of the energy-conserving nature of
the thinker gas numerical implementation, a test simulation using a constant-energy ensemble was prepared and the
total energy of the system was monitored, shown in fig. S1. The implemented thinker gas algorithm does not inject
or remove energy from the system at a rate greater than numerical precision effects under standard fixed-diameter
dynamics.

S3. THERMODYNAMICS OF INFORMATION FOR ACTIVE MATTER

To understand the origin of activity in informational systems like the thinker gas, we will begin from basics by
first describing the origin of mechanical activity in thermodynamic language. Consider an isothermal system which
has had its Helmholtz free energy raised by an amount ∆F (perhaps as the result of an external field applied by a
‘controller’). The controller must exert

W in
cont ≥ ∆F (S1)

work to accomplish this change, with saturation of the bound only for reversible processes with no heat transfer. Now
that the system is prepared in a high-energy state it can perform work on some external load as it relaxes. This work
is similarly

Wout
sys ≥ −∆F. (S2)

where the sign of Wout
sys is negative. The controller exerts work W in

cont so as to prepare the system to perform work

−Wout
sys ≤ W in

cont on a load. Now consider replacing the controller with an active agent immersed in the system.

If Wout
sys is used to move the active agent, then the above logic is unchanged except that the fate of Wout

sys is to be
enventually converted completely to heat in dissipative processes.
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Fig. S1: Total kinetic and potential energy of a numerically simulated thinker gas for various values of the time
step parameter dt. For times less than 5× 104, the system is evolved under fixed-diameter dynamics with a constant-energy
integrator. For t > 5 × 104, diameter resizing is enabled. The diameter resizing procedure does not produce a detectable
signature in the total energy drift of the system, which is controlled by the choice of dt.

When the active agent has the ability to collect measurements, equation S1 must be ammended with another term
accounting for how information changes the entropy of the system [25],

W in
cont + kbTI ≥ ∆F. (S3)

Where I is the mutual information of a measurement outcome and the microstate of the system. Even in the absence
of work exerted by the agent, free energy differences in the system can be created (and therefore used to exert work
on loads). Just as in the previous case, Wout

sys ≥ −∆F , yielding

Wout
sys ≥ −W in

cont − kbTI = −W in
cont + T∆S (S4)

where ∆S = −kbI is the amount that the system’s entropy has been reduced by the measurement. The work available
to propel the active agent may be non-zero even for agents what exert no forces on the system that surrounds them.

When the action of an informational active agent is repeated (e.g. at intervals ∆t), an additional complication
arises where each new measurement outcome may be correlated with prior measurements. This dependence can be
expressed as [26]:

∆St = −kb
∑

t

I(Xt;mt|M0→t−∆t) (S5)

where Xt is the microstate measured at time t, mt is the collected measurement, and M0→t−∆t is the history of
measurements collected at prior times. The gained information is conditional on prior measurement outcomes -
entropy is only lowered if a new measurement collects novel information about the system. When the measurements
are error-free (i.e. they perfectly report the relevant microscopic information), eq. S5 can be expressed using the
Shannon entropy of the measurement sequence:

∆St = −kbH(M0→t) (S6)

where the Shannon entropy takes its usual form:
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H(X ) = −
∑

x∈X
P (x) ln P (x) (S7)

The entropy of the measurement history M0→t is potentially complex to calculate for non-ergodic measurement en-
sembles. However our focus is on steady states of large collections of informational agents, so we will construct ergodic
measurement ensembles with well-defined steady states. In this case the rate of entropy decrease per measurement
by agent can be expressed as a limit:

lim
t→∞

∆St
t

= ∆S̄. (S8)

If the system can be represented as a steady Markov process, eq. S5 can be expressed as an entropy rate given by
the weighted Shannon entropy of the relevant stochastic matrix:

∆S̄ = −kbH̄(M) = kb
∑

ij

µiPij ln Pij (S9)

where P is the stochastic matrix that describes transitions between states [27] and µ is the accompanying stationary
distribution.

To organize the distinction between mechanical and informational driving, it is useful to consider a mixed active
process with a bound on the work it can exert on the system (W < ε). Each time the active process acts, it takes
a measurement to check if the action can be taken without violating the bound ε. Note that in cases where the
mechanical work is capped at some value Wmax (e.g. the maximum possible output torque of a motor), the bound
only becomes relevant if ε < Wmax. Similarly, taking actions may require mechanical work (such as overcoming friction
in a mechanism) that has no dependence on the particle or system’s state. This kind of work is assumed to be small,
or equivalently that the total bound includes an external and internal component, εtotal = ε + εint. The ‘internal’
work bound covers the cost of internal inefficiencies of the active process, such as friction. Here we only consider
variations of the ‘external’ work bound, which constrains the work done by the active process on the particle’s, or
system’s, state. A particle with such a mixed process can be driven at most by

W̄ ≥ −〈W 〉(<ε) + kbT∆S̄ (S10)

where 〈W 〉(<ε) is the expected amount of mechanical work per action from actions that obey the bound ε. The
mechanical contribution is not directly scaled by temperature, whereas the informational part grows (entropy changes
due to measurement are always negative) with temperature, indicating that informational active agents grow stronger
as fluctuations increase. This dependence on temperature is reminiscent of entropic elasticity [28–31], in which rubber-
like materials grow stiffer as temperature is increased. To gain further insight into the work and entropy terms that
make up eq. S10, we will now construct a Markov chain model of an active process with two discrete states.

S3.1. Two state Markov chain model of an informational active process

Consider a binary active processes, i.e. one that has only two states. This process is part of a measurement and
feedback loop - the active process measures the system and determines if a change of state is warranted. We can
describe this situation by focusing on the results of the measurement, the answer to the question “which state should
I adopt?”. This measurement m is binary valued (m = 0 or m = 1), and the answer fluctuates due to the noisy
system. Measured values of m = {0, 1} correspond to control actions, c = {0, 1} - e.g. when a measurement m = 0 is
collected, the control action c = 0 is performed on the system. Therefore, measured answers must respect the bound
imposed by ε. If we represent the dynamics of the measurement variable m with a Markov chain, and focus on the
long time limit in which a stationary distribution µ has been reached, we can compute the entropy rate directly using
eq. S9. Let us start by specifying a simple but generic form of the transition matrix P,

P =

[
1− αΣ αΣ
βΣ 1− βΣ

]
(S11)

where αΣ is the probability of the measured variable changing from mt = 0 to mt+∆t = 1, and βΣ is the probability
of the reverse transition of mt = 1 to mt+∆t = 0. The terms β and α represent the transition outcomes of some
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stochastic process in the surrounding system, while Σ is the likelihood that taking the control action associated with
measurement m will respect the work bound ε. Said another way, the controller would implement the control action
c = 1 at a time t + ∆t, given a prior state m = 0 at time t, with probability α. However the bound ε only permits
this with probability Σ. For the transition matrix defined in eq. S11, the stationary distribution is

µ =
[

β
β+α

α
β+α

]
, (S12)

in which Σ has dropped out due to its symmetry.
Take as an instructive example the case of α = 1/2, β = 1/2, Σ = 1. These parameters describe a delta-correlated

random process (coin flips), in which the work bound never restricts the controller, and the entropy rate of this process
reduces to ln 2. Generally, when α, β 6= 1/2 longer-time correlations exist in the measurement stream - the value of
mt+dt becomes conditional on mt. As we saw before in eq. S5, this reduces the amount of new information in each
measurement.

We can gain further understanding by choosing a form for the probability of an action respecting the work bound,
Σ. Consider a process where switching from control action c = 0 to c = 1 (or vice versa) dissipates an amount of
work, with a probability distribution given by

P (W ) = (1− P0)
1

σ

√
2

π
e−
|W |2
σ2 + P0δ(0), (S13)

where σ parameterizes the fluctuations of the system that affect expended work, δ is the impulse function (
∫
δ = 1)

and P0 is the probability that the action costs zero work. The likelihood of this work falling below the bound set by
ε is the integral:

Σ =

∫ ε

0

P (W )dW = (1− P0) erf
( ε
σ

)
+ P0 (S14)

where erf() is the standard error function. We can also now write down the form of the mechanical work term in
eq. S10:

〈W 〉(<ε) =

∫ ε

0

W (P (W )− P0δ(0))dW =
(1− P0)σ√

2π

(
1− e− ε2

σ2

)
(S15)

and so obtain a full expression for the bound of work done by the system per action on the active agent:

W̄ ≥ − (1− P0)σ√
2π

(
1− e− ε2

σ2

)
+ kbTH̄(M). (S16)

For α = β = 1/2, the terms of this equation are plotted in fig. S2 as a function of the ratio of the mechanical work
bound to the work fluctuations (ε/σ). Note that σ can be a function of the temperature of the system, as well as
other parameters of interaction. Consider a case where actions are prohibited by obstacles in the environment - σ
will depend upon the fluctuations of those obstacles (i.e. kbT ) as well as parameters such as their mass or mechanical
stiffness.

We see that the entropy-like contribution to the non-equilibrium free energy as ε→ 0 is:

− kbTH̄(P0α) = kbT (P0α ln P0α+ (1− P0α) ln (1− P0α)) , (S17)

which is an entropy associated with the probability that actions will require zero work. Conversely, as ε → 0 the
contribution from mechanical work approaches zero. In the limit of large ε, the informational contribution approaches
−kbTα = kbT ln 2, losing any dependence on the statistics of the constraint. The mechanical contribution approaches
a value set by the details of σ. In the example shown here, σ = 1, however arbitrarily large values are possible.
Despite this, the mechanical contribution will always equal zero as ε→ 0
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Fig. S2: Propulsive power bounds for a mixed informational-mechanical Markov process. A binary variable,
updated by a simple Markov process that includes the effect of a mechanical work constraint, ε. Here σ is a variance associated
with mechanical work exerted by the process, and P0 is the likelihood of an action requiring no work. The transition probabilities
are kept fixed at α = β = 1/2. The total available power has an informational (black) and mechanical (red) contribution. In
the limit of large ε/σ the informational process approaches the entropy of unconstrained transitions, and the mechanical work
approaches a value controlled by the variation in how much mechanical work actions require (σ). Note that at finite ε the
mechanical contribution may far exceed the informational contribution depending on the details of σ, however as ε → 0 the
mechanical contribution always approaches zero. In contrast, informational driving only approaches zero as ε→ 0 if P0 = 0.

S4. THE THINKER GAS VELOCITY DISTRIBUTION FUNCTION

In order to derive an approximate description of the thinker gas velocity distribution function, we will outline
key points from the derivation of the Boltzmann equation which describes the evolution of the same distribution for
a hard sphere gas. More information on the derivation of the standard Boltzmann equation and its mathematical
properties can be found in texts by Cercignani et al [32] and Kardar [33]. From there, the treatment is extended to
the case of hard disks with non-constant diameters (which are functions of particle velocity only). We show the form
of the collision operator which describes the thinker gas, and demonstrate that this operator has a modified collision
invariant expression which includes the diameter function D(~v). We use this property to define a linear system of
integral equations which permits solving for the deviation of the thinker gas velocity distribution function from the
equilibrium Maxwell-Boltzmann (MB) distribution.

S4.1. Kinetic theory of hard disks

The evolution of a gas in phase space under the influence of interparticle collisions can be described by the BBGKY
hierarchy. In this set of coupled differential equations the evolution of N -particle distribution functions (denoted
P (N)) are dependent upon the dynamics of N + 1-particle distributions. The full hierarchy is in general too complex
for useful prediction, and so it is often truncated to only include one and two-particle distributions. The single-particle
distribution function (P (1)) is obtained from the full system distribution function of N particles by marginalization:

P (1)(~x1, ~v1, t) =

∫

R2N−2

P (~x1, ~v1, ~x2, ~v2, ..., ~xN , ~vN , t)d~x1d~v1, ...d~xNd~vN (S18)

This is the probability of finding a particle within the interval [~x1 + d~x,~v1 + d~v1, t+ dt]. The evolution of P (1) in the
absence of collisions proceeds only by the streaming of particles along straight trajectories (∂P (1)/∂t = −~v · ∇~xP (1)).
Collisions between particles introduce a new operator to the equation of motion of the single-particle distribution:

∂P (1)

∂t
+ ~v · ∇~xP (1) = Q (S19)

Q describes the rate of change of particle number (or density) within the interval [~x + d~x,~v + d~v, t + dt] caused
by collisions. For hard spheres, collisions occur only when two particles are found in contact. Naturally, Q must
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involve the two particle distribution, P (2) (the probability of finding two particles in a given configuration). If we
denote pre-collision velocities for a pair of particles as ~v and ~v∗, and their post-collision velocities as ~v′ and ~v′∗, we
can write the collision operator as the difference of two rates, the gain and loss of particles within the interval of
interest (Q = Q+ −Q−). Particles are removed from the interval by collisions (velocities are transformed from ~v,~v∗
to ~v′, ~v′∗). The likelihood of a collision is the same as the likelihood of finding a two-particle configuration in contact.
For particles of fixed diameter (D0):

Q− =
1

2

∫

R2

∫

S
P (2)(~x,~v, ~x+D0n̂, ~v∗, t)d~v∗dn̂ (S20)

here the variable n̂ is a unit vector that lies along the particle contact vector and integration over dn̂ occurs on the
surface S of all possible contacts. For a gas in a periodic domain (homogeneous spatial density) the spatial aspect
of P (2) can be approximated geometrically. A rectangular area with length |(~v∗ − ~v) · n̂|dt and width |D0dn̂| = D0

contains the particles with velocity ~v∗ which are capable of striking the first particle. The probability density of
finding two particles with velocities ~v,~v∗ in contact can therefore be written as:

Q− =
1

2

∫

R2

∫

S−
P (2)(~v,~v∗, t)|(~v∗ − ~v) · n̂|D0d~v∗dn̂ (S21)

where now location variables in P (2) have been dropped due to the assumption of spatial homogeneity. The inner
integration is carried out over half the unit disk (S−, the half for which velocities ~v and ~v∗ are approaching each
other). This loss term is balanced (at steady state) by a similar term describing the gain of probability density by
scattering from other regions of velocity space. The only differences being that the domain S− is replaced by S+, the
complementary hemisphere, and the velocities in consideration are ~v′, ~v′∗, velocities which will undergo a scattering into
~v,~v∗. As in the standard treatment, we will use the ‘molecular chaos’ assumption to replace two particle distribution
terms with the product of single particle terms P (2)(~v,~v∗, t) ≈ P (1)(~v, t)P (1)(~v∗, t). In the standard Boltzmann
equation, the gain and loss terms are collected together under common integration limits by exploiting the time
reversal symmetry of the collision process. Since we will now expand our treatment to include gases with diameters
which are not constant in velocity space, we must examine the reversibility of hard disk collisions more closely.

S4.2. Hard disk collisions with non-constant diameter

We can find the velocities after collision between a pair of hard disks by conservation of momentum and energy.
Assuming uniform particle masses, momentum and kinetic energy are conserved through the collision process:

~v + ~v∗ = ~v′ + ~v′∗ (S22)

|~v|2 + |~v∗|2 = |~v′|2 + |~v′∗|2 (S23)

This collision process can be viewed as the exchange of velocities projected onto the vector which points from one disk’s
center to the other. If n̂ is a unit vector that points between disk centers at collision contact, then the post-collision
velocities can be written as (for disks of equal mass):

~v′ = ~v − ((~v − ~v∗) · n̂)n̂ (S24)

~v′∗ = ~v∗ + ((~v − ~v∗) · n̂)n̂ (S25)

For disks of fixed diameter, this scattering process is microreversible; (~v,~v∗) map to (~v′, ~v′∗) and (−~v′,−~v′∗) map to
(−~v,−~v∗), resulting in a Jacobian for the change of variables equal to −1 [32]. This one-to-one mapping allows all
four velocity terms to be collected under the same unit disk integration in the standard Boltzmann collision operator.

When particle diameters are instead permitted to be functions of velocity, the microreversibility of the collision
process is broken. We can see this diagrammatically in Fig. S3a. In this representation, we view the two particle
collision process as the scattering of a point object with velocity ~v∗ − ~v off of a stationary disk with diameter
(D(~v)+D(~v∗))/2. By changing the location of the stationary disk, the mapping of velocities can be preserved (fig. S3b).
In a coordinate frame centered on the point of contact, the forward and reverse scattering process are symmetric
provided that the coordinates of the stationary particle are scaled by a factor (D(~v′) + D(~v′∗))/(D(~v) + D(~v∗)).
The collision process can also be represented with the so-called ‘impact parameter’ (σ) as the integration variable
(as opposed to the vector n̂). Fig. S3c shows that a rescaling of the impact parameter has an equivalent effect of
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Fig. S3: The microreversibility of hard disk collisions with velocity-dependent diameters. Two particles of
diameter D(~v) = D and D(~v∗) = D∗ with velocities ~v and ~v∗ are shown as the collision of a point object (with velocity ~v∗ − ~v)
with a stationary disk of diameter D+D∗. a In the coordinate frame centered on the stationary disk, the forward (black) and
reverse (grey) collisions are not symmetric. b In the coordinate frame centered on the point of contact forward and reverse
collision processes are symmetric, provided that the stationary disk’s position is rescaled by a factor (D′+D′∗)/(D+D∗) c The
symmetry of the collision can also be preserved in the frame centered on the stationary disk by rescaling the impact parameter
of the incoming particle.

preserving the velocity mapping. Naturally, the choice of rescaling one particle’s position or the other is arbitrary
and should produce equivalent results.
This mapping defines the procedure for exchanging unprimed and primed velocity variables in the collision operator
of the thinker gas. From now on, we will refer to the single particle velocity distribution function as f(~x,~v, t), and
suppress the location and time arguments as we are concerned with the homogeneous steady-state solution. For
brevity, functions of velocity will have their argument suppressed but retain distinguishing marks (such as f(~v′∗) = f ′∗
and D(~v′∗) = D′∗). In this notation, we write the loss term of the thinker gas collision operator as:

Q− =
1

2

∫

R2

∫

S−
(D +D∗)ff∗|(~v∗ − ~v) · n̂|d~v∗dn̂ (S26)

The gain term can be expressed by the exchange of unprimed velocities for primed ones. The term ~v∗ − ~v = ~v′∗ − ~v′
is conserved by the collision process, and so need not be transformed.

Q+ =
1

2

∫

R2

∫

S+

(D′ +D′∗)f
′f ′∗|(~v∗ − ~v) · n̂|d~v′∗dn̂ (S27)

These terms can be collected under a common integration, as the diameter function scaling acts a Jacobian term.
The form of Q shown in the text is achieved by redistribution of diameter terms:

Q = Q+ −Q− =
1

2

∫

R2

∫

S
(D +D∗)|(~v∗ − ~v) · n̂|

[
D′ +D′∗
D +D∗

f ′f ′∗ − ff∗
]
d~v∗dn̂ (S28)

Notice that the resulting collision operator is the sum of two terms that differ only by D and D∗. We will next
consider the invariants of the thinker gas collision operator.

S4.3. The thinker gas collision invariant

We will first discuss collision invariants for the standard Boltzmann equation, and then explore the consequences
of our modified thinker gas collision operator. If we consider a moment of a distribution function f(~v, t) which is a
solution to the Boltzmann equation with a non-time-varying test function φ:
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〈φ〉f =

∫

Rd
f(~v, t)φ(~v)d~v (S29)

the evolution of this quantity is:

d

dt
〈φ〉f =

∫

R2

φ(~v)Q(f)(~v, t)d~v (S30)

The function φ can be brought into the integrand of the collision operator since it is not a function of time. As we are
now considering an expression integrating over all ~v and ~v∗ (and by extension ~v′ and ~v′∗), the choice of primed and
starred variables is entirely arbitrary. A standard procedure is to average over the exchange of velocity variables [32].
We first express the right side of eq. S30 (with Q appropriate for constant disks, and dropping velocity arguments
where obvious) as:

1

2

∫

R2

∫

R2

∫

S
φ (f ′f ′∗ − ff∗) |(~v∗ − ~v) · n̂|D0d~v∗d~vdn̂ (S31)

The exchange of starred and unstarred variables results in no change to the expression, allowing the average over this
exchange to be written as:

1

4

∫

R2

∫

R2

∫

S
(φ+ φ∗) (f ′f ′∗ − ff∗) |(~v∗ − ~v) · n̂|D0d~v∗d~vdn̂ (S32)

Exchanging primed variables (which can be done because of the microreversibility of the constant-diameter collision
process), results in a change of sign. Therefore the result of averaging over both exchanges is:

1

8

∫

R2

∫

R2

∫

S
(φ+ φ∗ − φ′ − φ′∗) (f ′f ′∗ − ff∗) |(~v∗ − ~v) · n̂|D0d~v∗d~vdn̂ (S33)

If φ is a quantity which is conserved through the collision, then d
dt 〈φ〉f = 0. This defines a summational collisional

invariant for the system. For the Boltzmann equation, summational invariants can only be linear combinations of
the microscopically conserved quantities, M = 1, ~v, |~v|2, which are unchanged during collision by construction [34].

Therefore there exist constants (a,~b, c) ∈ R×R2 ×R such that:

M(~v) = a+~b · ~v + c|~v|2 (S34)

The preceding discussion has been for the standard Boltzmann collision operator. We can follow the same logic for
the thinker gas collision operator described in eq. S28. If we temporarily shorthand the gain term in the collision
operator as G = (f ′f ′∗)(D

′ +D′∗)/(D +D∗) and the loss term as L = (ff∗), the result of averaging over primed and
unprimed variables for the thinker gas can be written as:

1

8

∫

R2

∫

R2

∫

S
(φ(D +D∗) + φ∗(D +D∗)− φ′(D′ +D′∗)− φ′∗(D′ +D′∗)) (G− L) |(~v∗ − ~v) · n̂|d~v∗d~vdn̂ (S35)

where the leading term involving the function φ can be written as:

φ(D+D∗)+φ∗(D+D∗)−φ′(D′+D′∗)−φ′∗(D′+D′∗) = (φD+φ∗D∗−φ′D′−φ′∗D′∗)+(φD∗+φ∗D−φ′D′∗−φ′∗D′). (S36)

If the entirety of eq. S36 is zero at all points in the velocity plane, then the quantity φ is stationary on the thinker
distribution. The second term on the r.h.s. of eq. S36 contains only cross terms between starred and unstarred
variables, and so all terms within it will integrate to the same value and the total term reduces to zero. An expression
for the time evolution of a test function φ for the thinker gas can therefore be written with only the first term in the
r.h.s. of eq. S36 as:
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d

dt
〈φ〉ft = −1

2

∫

R2

∫

R2

∫

S
Dφ

(
f ′f ′∗

D′ +D′∗
D +D∗

− ff∗
)
|(~v∗ − ~v) · n̂|d~v∗d~vdn̂ (S37)

From this representation, we can define a new test function, g = D(~v)φ. In order for the function φ to be stationary
under the action of the thinker collision operator, the quantity g must be a collisional invariant (unlike the case for
fixed-diameter disks, where φ itself must be invariant). For a collisionally invariant g there must exist constants which

express it as a linear combination of microscopically conserved quantities: g = a+~b · ~v + c|~v|2 = DM. Note that an
invariant test function for the MB distribution does not generically produce an invariant g for the thinker collision
operator, due to the diameter rescaling. We will use this relation to define the velocity distribution function of the
thinker gas. Beginning with the MB velocity distribution function in 2D:

fm(~v) =
mρ

2πkT
e−

m|~p|2
2kT (S38)

where ~p = ~v−〈~v〉 = ~v−~u is the velocity of the gas in the flow frame. We express the thinker gas distribution function
as ft = (1 + D)fm, where D is a function of velocity only. Since we seek the steady-state form of D, we can treat
(1 +D) as a non-time-varying test function operating on the MB distribution. We are searching for the form of this
test function that has stationary expectation values on the MB velocity distribution under the action of the thinker
gas collision operator. By substituting 〈(1 + D)〉fm,Qd for 〈φ〉f in eq. S37, we see that steady state will be reached
when D(1 +D) is a summational collision invariant. Finding the form of D amounts to specifying the four constants
a, bx, by, c which define the linear mixing of microscopically conserved quantities. These constants can be found if we
require that the first four moments of the thinker gas velocity distribution are equal to the first four moments of the
equilibrium MB distribution.

This requirement reflects the fact that thinker gas collisions microscopically conserve number, momentum, and
kinetic energy, just as elastic collisions between fixed diameter disks. This requires that any re-sizing of the disks
occurs between collisions. From a theoretical point of view, the gas is sparse enough to ignore the cases in which
a diameter change post-collision must be delayed until the disks have sufficiently separated. This limitation on the
ability of the disks to change their size is likely the most significant contributor to deviations from the theory at high
densities or large maximum diameters.

The requirement that the first four moments of the thinker gas distribution are equal to those of the MB and can
be written as:

∫

R2

Mfmd~v =

∫

R2

M(1 +D)fmd~v

0 =

∫

R2

MDfmd~v (S39)

which highlights that the expectation value of the deviation of the thinker distribution (D) must be zero for the
first four moments. Note that this restriction does not constrain the third-order moments which define the heat flux
tensor, or even the individual entries of the pressure tensor (derived from second-order moments). Only the trace of
the pressure tensor is fixed relative to the MB distribution.

Using the expression for the thinker gas collision invariant, g = D(1 + D), we can trivially reorder to obtain
(1+D) = gD−1. As a scalar function which must be greater than zero, division by D presents no problems. In practice,
D need not even be non-zero everywhere, but instead only where the probability density of fm is not infinitesimal.
Using this expression for the thinker perturbation, and the notation for expectation value 〈φ〉m =

∫
φfmd~v, we can

write:

〈M〉m = 〈M(1 +D)〉m
= 〈MgD−1〉m
= a〈MD−1〉m + bx〈MvxD

−1〉m + by〈MvyD
−1〉m + c〈M|~v|2D−1〉m (S40)

For each of the conserved moments (M = 1, vx, vy, |~v|2) a new expression is found, allowing for the definition of a
full rank system of linear equations:
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A ·G = B (S41)

A =




〈 1
D 〉m 〈 vxD 〉m 〈 vyD 〉m 〈 |~v|

2

D 〉m
. 〈 v

2
x

D 〉m 〈vxvyD 〉m 〈 vx|~v|
2

D 〉m
. . 〈 v

2
y

D 〉m 〈 vy|~v|
2

D 〉m
. . . 〈 |~v|

4

D 〉m




(S42)

G =
[
a bx by c

]>
(S43)

B =
[
ρ ρux ρuy ρ|~u|2/2 + ρkT

]>
(S44)

where A is symmetric and redundant entries are not shown. Using the solution of this system of equations the thinker
gas velocity distribution can be written as:

ft = fm(1 +D) = fmD
−1g = fmD

−1(A−1B) ·G (S45)

S4.4. Demonstration of ft as the steady-state solution to the variable-diameter collision operator

We can show directly that the above procedure for finding a thinker gas distribution function solves Q(ft) = 0 by
examining the collision operator written as:

Q =
1

2

∫

R2

∫

S
B(~v∗, ~v, n̂) [(D′ +D′∗)f

′f ′∗ − (D +D∗)ff∗] d~v∗dn̂ (S46)

in which the cross-section terms have been redistributed and the kernel term has been collected into a function B for
brevity. Focusing on the term in brackets (Q), we can replace f with ft = D(1 +D)fm:

Q ≡ (D′ +D′∗)(1 +D′)f ′m(1 +D′∗)f ′m∗ − (D +D∗)(1 +D)fm(1 +D∗)fm∗ (S47)

First, note that the Maxwellian distribution is the exponential of a collision invariant, or:

ln fm + ln fm∗ − ln f ′m − ln f ′m∗ = 0 (S48)

fmfm∗
f ′mf ′m∗

= 1 (S49)

Equation S49 allows for eq. S47 to be written as:

Q = fmfm∗ [D′(1 +D′) +D′∗D′(1 +D′) +D′∗(1 +D′∗) +D′D′∗(1 +D′∗)]
+fmfm∗ [D(1 +D)−D∗D(1 +D)−D∗(1 +D∗)−DD∗(1 +D∗)] (S50)

Recall that the quantity g = D(1 +D) is also a collision invariant. We simplify eq. S50 to:

Q = fmfm∗ [g′ + g′∗ − g − g∗] + fmfm∗ [g′D′∗ + g′∗D′ − gD∗ − g∗D] (S51)

The first term in eq. S51 is zero, by the definition of collision invariants. The second term is also equal to zero,
because each of the four terms individually integrate to zero. The logic for each term is identical, so we will focus on
fmfm∗gD∗:

q(g,D∗) ≡ − 1
2

∫
R2

∫
S B(~v∗, ~v, n̂)fmfm∗gD∗d~v∗dn̂

= − 1
2gfm

∫
R2

∫
S B(~v∗, ~v, n̂)D∗fm∗d~v∗dn̂ (S52)

Recall that the collision kernel B for hard disk collisions is a linear function of relative velocity. Therefore, eq. S52
is a first-order moment of Dfm, which must equal zero by construction (see eq. S39). The other terms in eq. S51 can
all be likewise shown to equal zero by exchange of velocity variables and use of eq. S49.
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S4.5. Invertibility of the matrix A

A can be written as the element-wise expectation over fmD
−1 of the symmetric matrix:

EfmD−1




1 vx vy |~v|2
. v2

x vxvy vx|~v|2
. . v2

y vy|~v|2
. . . |~v|4


 (S53)

This matrix can be written as the outer product of two vectors (therefore it has rank one):

[
1 vx vy |~v|2

]> [
1 vx vy |~v|2

]
(S54)

Despite this, A is generically invertible. The element-wise expectation promotes the matrix to full rank. If we
temporarily adopt the notation of 〈φ〉 =

∫
φD−1fmd~v, A can be written as:




〈1〉 〈vx〉 〈vy〉 〈|~v|2〉
〈vx〉 〈v2

x〉 〈vxvy〉 〈vx|~v|2〉
〈vy〉 〈vxvy〉 〈v2

y〉 〈vy|~v|2〉
〈|~v|2〉 〈vx|~v|2〉 〈vy|~v|2〉 〈|~v|4〉


 (S55)

The determinant of this matrix can be found by cofactor expansion along the first column. If we examine the
determinant of the first of the four 3× 3 matrices which make up A, we find that a term composed of the difference
of permutations of expectation values is produced:

〈1〉

∣∣∣∣∣∣

〈v2
x〉 〈vxvy〉 〈vx|~v|2〉

〈vxvy〉 〈v2
y〉 〈vy|~v|2〉

〈vx|~v|2〉 〈vy|~v|2〉 〈|~v|4〉

∣∣∣∣∣∣
(S56)

= 〈1〉
(
〈v2
x〉〈v2

y〉 − 〈vxvy〉2
)
〈|~v|4〉

+〈1〉
(
〈vxvy〉〈vx〉〈vy〉+ 〈vx〉2〈vy〉2 − 〈v2

x〉〈vy〉2 − 〈vx〉2〈v2
y〉
)
〈|~v|2〉2 (S57)

which will be nonzero due to the non-independence of the terms being exchanged through the expectation operator.
All four sub-matrices follow this same pattern, with no requirements on the form of D−1. Provided that D > 0 across
the velocity plane, A can be numerically inverted without difficulty.

S4.6. Diameter functions approaching zero

The expression for the thinker gas involves the term 1/D, implying that particle diameters must always remain finite
for reasonable solutions to exist. As a demonstration, we can construct a diameter function with a single minimum
which is nonzero by a small value ε:

D(~v, ε) = 1− e−(|~v|2/vth)2 + ε (S58)

where vth is the mean thermal speed of particles. In fig. S4 slices through the velocity distribution function for
various values of ε are shown. As ε→ 0, a probability density spike develops. This can be understood physically by
considering the rate of collision for particles near the minimum. Such particles have greatly reduced collision rates
(and so change velocities very slowly) compared to particles at velocities with finite diameters. For a D with a true
zero, particles would never leave the point of phase space where collisions could not occur. This region would behave
as a particle sink, from which it would be impossible to scatter back out of. Accordingly, the distribution function
would become a delta function and the distribution entropy would diverge. The approach to that divergence is shown
by the cuts in fig. S4.
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Fig. S4: Velocity distribution function for thinker gases with a minima approaching zero. A slice through vy = 0

of the velocity distribution function (ft) for a diameter function D = 1− e−|~v|2/v2
th + ε. As the minimum of D approaches zero,

a density spike in velocity space develops.

S5. EXPLICIT FORM OF A FOR SELECT D(~v)

The matrix A which defines the thinker gas velocity distribution function involves finding the expectation value
(over the MB distribution) of several functions of velocity multiplied with the inverse diameter function (D). For
arbitrary D these Gaussian integrals may become too cumbersome to find analytically, and numerical integration
is expedient. In this appendix we will present explicit equations for the A matrices of two special D functions - a
diameter step function, and an anisotropic Gaussian diameter function. These matrices may in principle be inverted
analytically through a process such as finding the adjugate matrix. The equations for such a process rapidly become
unwieldy however, so we will instead use a semi-analytical approach of finding A exactly, then performing a numerical
inverse and estimating small-value derivatives of the relevant constants a, bx, by, and c numerically. This numerical
procedure can of course be extended to estimate the values of the A matrix for diameter functions which do not admit
feasible analytic integration.

S5.1. Step function

A convenient diameter function can be written using the Heaviside step function:

D(~v) = Ds + (Dl −Ds)H

(
−~v ·

~ξ

|~v|

)
(S59)

As we will require D−1 in many formulas, it is useful to express this also with the Heaviside function:

D−1(~v) =
1

Dl
+

(
1

Ds
− 1

Dl

)
H

(
−~v ·

~ξ

|~v|

)
(S60)

where Ds and Dl are the small and large diameters respectively, and ~ξ is the normal vector of the large/small decision

boundary. We will only consider fixed ~ξ =
[
1 0

]
here. The value of the Heaviside step function at zero will here

be taken to be zero (as opposed to 1/2). With this choice of ~ξ, integrals over the velocity plane can be split into an
integral over the entire plane in addition to an integral over the half plane (x > 0). Using well-known expressions for
Gaussian integrals of the form

∫
xnN (x) [35], the following components of the A matrix can be found for a Maxwell-

Boltzmann distribution in 2D with bulk velocity ~u, thermal energy kbT and gas density ρ. Where it appears, erf()
refers to the standard error function.
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A11 =

∫
D−1fm =

1

Dl
+

1

2

(
1

Ds
− 1

Dl

)(
1− erf

(
−ux

√
m

2kbT

))
(S61)

A12 = A21 =

∫
vxD

−1fm =
1

Dl
ux +

(
1

Ds
− 1

Dl

)(
1

2
ux

(
erf

(
−ux

√
m

2kbT

)
− 1

)
−
√
kbT

2πm
e
− m

2kbT
u2
x

)
(S62)

A13 = A31 =

∫
vyD

−1fm =
1

Dl
uy +

(
1

Ds
− 1

Dl

)
1

2
uy

(
1− erf

(
−ux

√
m

2kbT

))
(S63)

A14 = A41 =

∫
|~v|2D−1fm =

∫
v2
xD
−1fm +

∫
v2
yD
−1fm = A22 +A33 (S64)

A22 =

∫
v2
xD
−1fm =

1

Dl

(
u2
x +

kbT

m

)
+

1

2

(
1

Ds
− 1

Dl

)((
u2
x +

kbT

m

)(
1− erf

(
−ux

√
m

2kbT

))
+ ux

√
kbT

2mπ
e
− m

2kbT
u2
x

)
(S65)

A33 =

∫
v2
yD
−1fm =

1

Dl

(
u2
y +

kbT

m

)
+

1

2

(
1

Ds
− 1

Dl

)(
u2
y +

kbT

m

)(
1− erf

(
−ux

√
m

2kbT

))
(S66)

A23 = A32 =

∫
vxvyD

−1fm =
1

Dl
uxuy +

(
1

Ds
− 1

Dl

)(
uxuy

2

(
1− erf

(
−ux

√
m

2kbT

))
+ uy

√
kbT

2πm
e
− m

2kbT
u2
x

)
(S67)

A24 = A42 =

∫
vx|~v|2D−1fm =

∫
v3
xD
−1fm +

∫
vxv

2
yD
−1fm (S68)

∫
v3
xD
−1fm =

1

Dl
ux

(
u2
x +

3kbT

m

)
+

(
1

Ds
− 1

Dl

)(
ux
2

((
u2
x +

3kbT

m

)(
1− erf

(
−ux

√
m

2kbT

))
+

(
u2
x

2
+
kbT

m

)√
2kbT

πm
e
−u2

x
m

2kbT

))

∫
vxv

2
yD
−1fm =

1

Dl
ux

(
u2
y +

kbT

m

)
+

(
1

Ds
− 1

Dl

)(
u2
y +

kT

m

)(
1

2
ux

(
1− erf

(
−ux

√
m

2kbT

))
+

√
kbT

2πm
e
− m

2kbT
u2
x

)

A34 = A43 =

∫
vy|~v|2D−1fm =

∫
vyv

2
xD
−1fm +

∫
v3
yD
−1fm (S69)

∫
vyv

2
xD
−1fm =

1

Dl
uy

(
u2
x +

kbT

m

)
+

(
1

Ds
− 1

Dl

)[
1

2
uy

√
m

2kbT

(
u2
x +

kbT

m

)(
1− erf

(
−ux

√
m

2kbT

))
+
uxuy
2
√
π
e
−u2

x
m

2kbT

]

∫
v3
yD
−1fm = uy

(
u2
y +

3kbT

m

)[
1

Dl
+

1

2

(
1

Ds
− 1

Dl

)(
1− erf

(
−ux

√
m

2kbT

))]
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A44 =

∫
|~v|4D−1fm =

∫
v4
xD
−1fm + 2v2

xv
2
yD
−1fm + v4

yD
−1fm (S70)

∫
v4
xD
−1fm =

(
u4
x +

6kbT

m
u2
x +

3kbT
2

m2

)
×

[
1

Dl
+

1

2

(
1

Ds
− 1

Dl

)(
1− erf

(
−ux

√
m

2kbT

))]
+

(
1

Ds
− 1

Dl

)√
kbT

2πm
uxe
−ux
√

m
2kbT

(
u2
x + 5

kbT

m

)

∫
2v2
xv

2
yD
−1fm =

2

Dl

(
u2
x +

kbT

m

)(
u2
y +

kbT

m

)
+

(
1

Ds
− 1

Dl

)(
u2
y +

kbT

m

)[(
u2
x +

kbT

m

)(
1− erf

(
−ux

√
m

2kbT

))
+

√
2kbT

πm
uxe
−u2

x
m

2kbT

]

∫
v4
yD
−1fm =

(
u4
y +

6kbT

m
u2
y +

3kbT
2

m2

)[
1

Dl
+

(
1

Ds
− 1

Dl

)(
1− erf

(
−ux

√
m

2kbT

))]

S5.2. Anisotropic gaussian diameter function

Another form for D with comparatively simple integrals to compute is an anisotropic Gaussian:

D = e
−γx m

2kbT
(vx−ux)2

e
−γy m

2kbT
(vy−uy)2

(S71)

where ~u is again the average velocity of the gas. The relative values of the constants γx and γx control the degree of
anisotropy. This diameter function is particularly convenient because it can be merged with the MB distribution and
integrated using the same functional forms:

A11 =

∫
D−1fm =

1√
1− γx

√
1− γy

(S72)

A12 = A21 =

∫
vxD

−1fm =
ux√

1− γy
√

1− γx
(S73)

A13 = A31 =

∫
vxD

−1fm =
uy√

1− γy
√

1− γx
(S74)

A14 = A41 = A22 +A33 (S75)

A22 =

∫
v2
xD
−1fm =

1√
1− γy

√
1− γx

(
u2
x +

kbT

m

1

(1− γx)

)
(S76)

A33 =

∫
v2
yD
−1fm =

1√
1− γy

√
1− γx

(
u2
y +

kbT

m

1

(1− γy)

)
(S77)

A23 = A32 =

∫
vxvyD

−1fm =
uxuy√

1− γx
√

1− γy
(S78)

A24 = A42 =

∫
vx|~v|2D−1fm =

∫
v3
xD
−1fm +

∫
vxv

2
yD
−1fm (S79)

∫
v3
xD
−1fm =

ux√
1− γx

√
1− γy

(
u2
x +

3kbT

m

1

(1− γx)

)

∫
vxv

2
yD
−1fm =

ux√
1− γx

√
1− γy

(
u2
y +

kbT

m

1

(1− γy)

)
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A34 = A43 =

∫
vy|~v|2D−1fm =

∫
vyv

2
xD
−1fm +

∫
v3
yD
−1fm (S80)

∫
v3
yD
−1fm =

uy√
1− γx

√
1− γy

(
u2
y +

3kbT

m

1

(1− γy)

)

∫
vyv

2
xD
−1fm =

uy√
1− γx

√
1− γy

(
u2
x +

kbT

m

1

(1− γx)

)

A44 =

∫
v4
xD
−1fm + 2

∫
v2
xv

2
yD
−1fm +

∫
v4
yD
−1fm (S81)

∫
v4
xD
−1fm =

1√
1− γx

√
1− γy

(
u4
x + u2

x

6kbT

m

1

(1− γx)
+ 3

(
kbT

m(1− γx)

)2
)

∫
2v2
xv

2
yD
−1fm =

2√
1− γx

√
1− γy

(
u2
x +

kbT

m

1

(1− γx)

)(
u2
y +

kbT

m

1

(1− γy)

)

∫
v4
yD
−1fm =

1√
1− γx

√
1− γy

(
u4
y + u2

y

6kbT

m

1

(1− γy)
+ 3

(
kbT

m(1− γy)

)2
)

S6. FIRST ORDER HYDRODYNAMICS OF THE THINKER GAS

In this section we comment on the consequences of the thinker gas for first order hydrodynamics by examining
the pressure tensor and heat flux. This procedure follows the standard treatment of a passive gas described by
the Maxwell-Boltzmann distribution (see for instance, Kardar [33]), but instead utilizes the thinker gas distribution
derived in section S4.

Quantities which are conserved microscopically relax at longer timescales than quantities which are not conserved in
pair collisions these are denoted ‘hydrodynamic’ variables and are the main quantities to be described by a hydrody-
namic theory. For elastic collisions particle number, components of linear momenta, and kinetic energy are conserved
which result in hydrodynamic fields of density, flow velocity, and temperature. By definition, the thinker gas also
conserves these quantities (however it has the freedom to redistribute conserved quantities over microscopic degrees
of freedom). Regardless of the detailed form, the collision term in equation S30 can be replaced with the left-hand
side of the Boltzmann equation, yielding the following expression for the evolution of a test function φ:

d

dt
〈φ〉 =

∫

R2

φ

[
∂t + vi∂i +

Fi
m

∂

∂vi

]
f(~x,~v, t) = 0 (S82)

where indices i are over Cartesian coordinates. This equation can be manipulated to yield an evolution equation for
expectation values of the function φ:

∂t(ρ〈φ〉) + ∂i(ρ〈viφ〉)− ρ〈∂tφ〉 − ρ〈vi∂iφ〉 −
ρFi
m
〈∂φ/∂vi〉 = 0 (S83)

Each of the conserved quantities can be evaluated with this expression to yield familiar hydrodynamic relations. First
we define the local velocity, thermal velocity, pressure tensor, rate of strain tensor, and local kinetic energy and heat
flux:

ui = 〈vi〉 (S84)

pi = vi − ui (S85)

Pij = mρ〈pipj〉 (S86)

uij =
1

2
(∂iui + ∂juj) (S87)

ε = 〈1
2
m|~p|2〉 = 〈1

2
m|~v|2 −mv · ~u+

1

2
m|~u|2〉 (S88)

q =
1

2
mρ〈pi|~p|2〉 (S89)
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Hydrodynamic equations pertaining to the conservation of mass, momentum and energy read:

∂tρ+ ∂i(ρui) = 0 (S90)

∂tui + uj∂jui =
Fi
m
− 1

mρ
∂jPij (S91)

∂tε+ ui∂iε = −1

ρ
∂iqi −

1

ρ
Pijuij (S92)

In order to close this set of equations a form for the pressure tensor and heat flux is needed. These objects are found
by taking expectation values of the single-particle probability distribution function, which is in general a function of
space, velocity, and time. We will instead follow the standard approach of using a first order approximation of these
quantities, found by taking modified expectation values over the homogeneous, steady-state distribution function
derived in appendix S4. We begin in the usual way by noting that a mean free path timescale exists, which in the
fixed-diameter case is approximately

τ× ≈
1

ρvthD
(S93)

where ρ is the number density of particles, vth is a typical particle speed, and D is a fixed diameter. For the thinker
gas, the above expression may be modified by considering that the mean diameter of the gas is the expectation of the
diameter function over the velocity distribution:

〈D〉ft =

∫
Dft =

∫
D(1 +D)fm (S94)

For the purposes of this derivation, the mean diameter of the thinker gas will be considered to be fixed, and so τ×
is taken to be the same in all directions. If we denote the previously discussed thinker gas velocity distribution for a
homogeneous, steady-state gas as f0

t , we now seek a first-order description of the deviations from this form (denoted
f1
t ). We set f1

t = f0
t (1 + h), where h describes this small deviation. Furthermore, we linearize the thinker collision

operator as:

QLd [f1
t ] ≈ −f0

t

h

τ×
(S95)

Using the following form of the Boltzmann equation which includes the effects of external forces (~F ):

∂f

∂t
+ ~v · ∇~xf +

~F

m
· ∇~vf = Q(f) (S96)

L[f ] = Q(f) (S97)

where L[f ] = [∂/∂t + vi∂/∂i + (Fi/m)∂/∂vi ] f is a linear differential operator. Using the linearized collision operator
approximation,

L[f1
t ] ≈ −f0

t

h

τ×
(S98)

h = −τ×
1

f0
t

L[f1
t ] ≈ −τ×L[ln f0

t ] (S99)

where only the leading term as been retained. We now examine the term L[ln f0
t ]:

ln f0
t = ln (f0

m(1 +D)) = ln (f0
mD

−1g) (S100)

= ln f0
m − ln D + ln (a+~b · ~v + c|~v|2) (S101)

L[ln f0
t ] = L[ln f0

m]− L[ln D] + L[ln (a+~b · ~v + c|v|2)] (S102)
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We can express h = hm − hD + hg to emphasize that three terms contribute to the first order deviations. The
first term, hm, is unchanged from the standard first-order treatment of an equilibrium gas. Since we are only
considering time-invariant diameter functions which are functions of velocity only, the second term will be equal to
−hD = −(Fi/(mD))∂D/∂vi. Within the bulk of a gas with negligible body forces, this term will not contribute. The
final term pertaining to the collision invariant g will have time and space derivatives arising from variations in the

fields T (~x, t), ~u(~x, t), and ρ(~x, t), as the values of a,~b, c are constant for constant T, ~u, ρ. We will denote such fields as
Φ, and approximate the derivative of the constants (∂/∂Φ)[a, bi, c] = [aΦ, bΦi , c

Φ].
If we focus on a single term of the L operator, vi∂/∂i (i.e. a steady-state, boundary-less system), and assume only

a single field has spatial variation, we can illustrate the contributions from hg.

vi
∂ln g

∂xi
=
∂g/∂ri
g

(S103)

= (aΦ + vjb
Φ
j + cΦ|~v|2)

1

g

∂Φ

∂xi
(S104)

The expectation of first order-quantities like the pressure tensor and heat flux can be found by integration over the
perturbed zeroth-order distribution:

〈O〉1 =

∫
Of0

t (1 + h) = 〈O〉0 + 〈hO〉0 (S105)

= 〈O〉0 + 〈hmO〉0 − 〈hDO〉0 + 〈hgO〉0 (S106)

For the pressure tensor (O = Pij) and the heat flux (O = qi), the contributions from the term 〈hmO〉 are unchanged
from the standard treatment of a passive gas, resulting in heat flux terms which relax thermal gradients and off-diagonal
pressure terms which relax shear flows. As noted above, the contributions from hD will often be unimportant, so we
focus on the term 〈hgO〉. The following forms of the pressure tensor and heat flux can be found:

Pij = mρ
∑

k

∫
fmD

−1(aΦ + vlb
Φ
l + cΦ|~v|2)

∂Φ

∂xk
vkpipj (S107)

qi =
1

2
mρ
∑

k

∫
fmD

−1(aΦ + vlb
Φ
l + cΦ|~v|2)

∂Φ

∂xk
vkpi|~p|2 (S108)

Several remarks can be made about the first-order thinker corrections to Pij and qi, however first some comment
about velocity reference frames must be made. The velocity, thermal velocity, and local velocity are related by
~p = ~v − ~u. Kinetic theory is largely conducted in the ~u co-moving frame, which allows for the definition of familiar
pressures, fluxes and temperatures. As the Maxwell-Boltzmann distribution is also defined in this frame, all is well.
However for the thinker gas, we may define the particle’s function of velocity in a global coordinate frame, or a local
coordinate frame (D(~v) or D(~p)). In this work we have chosen to use D(~v), except in the case of the anisotropic
Gaussian function defined in appendix S5. This is because in any practical realization of a device like the thinkers
described here, it is likely that knowledge of velocity in the global coordinate frame will be desirable or even required.
In order for the operation of thinkers to induce fluxes towards a goal region, thinkers must be aware of the large-scale
coordinate system which locates themselves and the target region. Furthermore, in such a case they are unconcerned
with local fluxes relative to nearby flow, but rather absolute fluxes towards or away from the target.

Another consideration is the complexity of estimating the local average velocity of neighboring thinker particles.
Simplistic methods of determining position (and hence velocity) such as utilizing a light gradient [36] inform particles
of their coordinates in a global frame. Using similar methods to determine relative velocities to neighbors also raises a
question of length scale - over what distance, practically, should particles consider their ‘local’ velocity neighborhood
to extend?

Finally, the removal of a global coordinate frame for thinker particles would necessitate each particle to have an
orientation vector. As this study concerns isotropic particles, particle orientations will not evolve during simulations
unless an orientation-coupling force is defined, in a manner analogous to the Toner-Tu model of flocking [15]. For
isotropic thinkers, such a choice would be arbitrary.

The mixed velocity components in eqs. S107 and S108 reflect the different considerations inherent to the operation
of thinkers and the definition of the hydrodynamic equations of motion. First let us consider the case of |~u| = 0, in
which ~p = ~v. In that case, the pressure tensor contains only one even moment of velocity and the term fmD

−1. If
D and fm have inversion symmetry about the same point, then only the even term (

∑
k

∫
fmD

−1vlvkvivjb
Φ
l ∂Φ/∂xi)

will contribute to the pressure tensor corrections. However in the case of inversion-symmetric D, the constants bi are



20

Fig. S5: Expansion ratio controls pattern fidelity. Patterns formed by dropping thinker grains with differing large and
small diameter ratios. Larger ratios substantially improve pattern fidelity.

zero and no heat fluxes arise in the quiescent fluid. Conversely, in the heat flux tensor all terms except for derivatives
of bi are even moments, and therefore contribute to heat fluxes in the presence of temperature gradients. Fluids with
bulk flows (|~u| 6= 0) will have contributions from first order-corrections to both heat fluxes and the pressure tensor.

S7. PATTERN RESOLUTION IN DROPPED THINKER GRAINS

The ability of thinkers to form and maintain patterns was principally a function of the ratio of their large and small
diameter states. Figure S5 shows this trend for diameter ratios ranging from Dl/Ds = 1.5→ 4.

S8. DESCRIPTION OF SUPPLEMENTAL VIDEOS

S8.1. Supplemental video S1

In this video, two species of thinker particles are dropped into a hard-sided box. They fall under a vertical force,
while a drag force (linear in velocity) causes them to slowly lose energy and settle into a layer. Feedback control of
thinker diameter allows the two species to separate and form a pre-programmed pattern.
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S8.2. Supplemental video S2

In this video, two species of thinker particles are continuously agitated while contained in a hard-sided box. Feedback
control of thinker diameters allow the two species to form patterns, which are changed over time. The thinkers can
therefore write sequences of symbols, as shown here with an equation.
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